

Betriebsanleitung für Messumformer der NivuMaster Serie

ab Software-Revisionsnummer 7.x.x

NIVUS GmbH

Im Täle 2 D-75031 Eppingen Tel. 0 72 62 / 91 91 - 0 Fax 0 72 62 / 91 91 - 999 E-Mail: info@nivus.com Internet: www.nivus.de

NIVUS AG

Burgstrasse 28 8750 Glarus, Schweiz Tel.: +41 (0)55 6452066 Fax: +41 (0)55 6452014 swiss@nivus.com www.nivus.de

NIVUS Austria

Mühlbergstraße 33B 3382 Loosdorf, Österreich Tel.: +43 (0) 2754 567 63 21 Fax: +43 (0) 2754 567 63 20 austria@nivus.com www.nivus.de

NIVUS Sp. z o.o.

ul. Hutnicza 3 / B-18 81-212 Gdynia, Polen Tel.: +48 (0) 58 7602015 Fax: +48 (0) 58 7602014 biuro@nivus.pl www.nivus.pl

NIVUS France

14, rue de la Paix 67770 Sessenheim, Frankreich Tel.: +33 (0)3 88071696 Fax: +33 (0)3 88071697 info@nivus.fr www.nivus.fr

NIVUS Ltd., United Kingdom

Wedgewood Rugby Road Weston under Wetherley Royal Leamington Spa CV33 9BW, Warwickshire Tel.: +44 (0)8445 3328 83 nivusUK@nivus.com www.nivus.com

NIVUS Middle East (FZE)

Building Q 1-1 ap. 055 P.O. Box: 9217 Sharjah Airport International Free Zone Tel.: +971 6 55 78 224 Fax: +971 6 55 78 225 middle-east@nivus.com www.nivus.com

NIVUS Korea Co. Ltd.

#2502 M Dong, Technopark IT Center, 32 Song-do-gwa-hak-ro, Yeon-su-gu, INCHEON, Korea 21984 Tel.: +82 32 209 8588 Fax: +82 32 209 8590 korea@nivus.com www.nivus.com

NIVUS Vietnam

21 Pho Duc Chinh, Ba Dinh Hanoi, Vietnam Tel.: +84 12 0446 7724 vietnam@nivus.com www.nivus.com

NIVUS Chile

Viña Cordillera Oriente 4565 Puente Alto, Santiago Tel.: +562 2266 8119 chile@nivus.com www.nivus.com

Übersetzung

Bei Lieferung in die Länder des europäischen Wirtschaftsraumes ist die Betriebsanleitung entsprechend in die Sprache des Verwenderlandes zu übersetzen.

Sollten im übersetzten Text Unstimmigkeiten auftreten, ist die Original-Betriebsanleitung (englisch) zur Klärung heranzuziehen oder der Hersteller zu kontaktieren.

Copyright

Weitergabe sowie Vervielfältigung dieses Dokuments, Verwertung und Mitteilung seines Inhalts sind verboten, soweit nicht ausdrücklich gestattet. Zuwiderhandlungen verpflichten zu Schadenersatz. Alle Rechte vorbehalten.

Gebrauchsnamen

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen und dgl. in diesem Heft berechtigen nicht zu der Annahme, dass solche Namen ohne weiteres von jedermann benutzt werden dürften; oft handelt es sich um gesetzlich geschützte eingetragene Warenzeichen, auch wenn sie nicht als solche gekennzeichnet sind.

1	Allgemeines1		11
2	2 Sicherheits- und Gefahrenhinweise		12
	2.1	Verwendung der Gefahrenhinweise	12
	2.2	Sicherheits- und Vorsichtsmaßnahmen	13
	2.3	Haftungsausschluss	13
	2.4	Pflichten des Betreibers	14
3	Gesa	amtansicht und Verwendung	15
	3.1	Übersicht	15
	3.2	Bestimmungsgemäße Verwendung	15
	3.3	Gerätekennzeichnung	16
	3.4	Gerätevarianten	17
	3.5	Technische Daten	18
	3.6	Ausstattung	19
	3.6.1	Lieferumfang	19
	3.6.2	Eingangskontrolle	19
	364	Rücksendung	19 20
	3.6.5	Einbau von Ersatz- und Verschleißteilen	20
4	Aufb	au und Funktion	21
	4.1	Gehäusemaße	21
	4.2	Funktionsbeschreibung	24
	4.3	Allgemeines	24
5	Insta	Illation und Anschluss	25
	5.1	Montagevorschriften	
	5.1.1	Montage Wandaufbaugehäuse:	25
	5.1.2	Montage 19"-Einschub	25
	5.1.3	Montage Front-/Schalttafelgehäuse	25
	5.2	Elektrische Installation	27
	5.2.1	Anschluss Messumformer	27
	5.2.2	Sensoranschluss	31
6	Uber	spannungsschutzmaßnahmen	32
7	Inbet	triebnahme	34
	7.1	Allgemeines	34
	7.2	Benutzung der Bedienelemente	35
	7.2.1	Anzeigebeschreibung	35
	7.3	Betriebszustände	36
	7.3.1	Run-Modus	36
	7.3.Z	Programmermodus	30
	7.5.5	Grundsätze der Bedienung	30
	741	Menütasten	
	7.4.2	Zahlentasten	40
8	Para	metrierung	41
	8.1	Zugriff auf den Programmiermodus	41
	8.1.1	Anwendung der Menüebenen	41
	8.1.2	Das direkte Bearbeiten von Parametern	42
	8.2	Test Mode	42
	8.3	Verwendung der seriellen Schnittstelle RS232	44
	8.4	Parametereinstellungen	45
6 7	5.2.1 5.2.2 Über Inbet	Anschluss Messumformer Sensoranschluss spannungsschutzmaßnahmen triebnahme	3 3
	5.2.1	Anschluss Messumformer	27
	5.2.1	Sensoranschluss	
6	5.2.2 Übor	Sensoranschluss	31
6	Über	spannungsschutzmaßnahmen	32
6	Über	spannungsschutzmaßnahmen	32
6	Über	spannungsschutzmaßnahmen	32
6	Über	spannungsschutzmaßnahmen	32
6	Über	spannungsschutzmaßnahmen	32
6	5.2.2 Üher	Sensoranschutzmaßnahmen	31 32
•	5.2.2	Sensoranschluss	31
	5.2.2	Sensoranschluss	31
	5.2.1	Anschluss Messumformer	27
	5.2	Elektrische Installation	27
	5.2	Elektrische Installation	27
	5.2	Elektrische Installation	27
	5.2 5.2 1	Elektrische Installation	27
	5.Z	Elektrische Installation	21
	5.2	Elektrische Installation	27
	5.2 5.2.1	Anschluss Messumformer	21 27
	5.2.1	Anschluss Messumformer	27
	5.2.1	Anschluss Messumformer	27
	5.2.1	Anschluss Messumformer	27
	5.2 5.2 1	Elektrische Installation	27
	5.2	Elektrische Installation	27
	5.1.3 5.2	Nontage Front-/Schattaeigenause	25 77
	5.2	Elektrische Installation	27
	5.2	Elektrische Installation	27
	5.2.1	Anschluss Messumformer	27
	5.2.1	Anschluss Messumformer	27
	5.2.1	Anschluss Messumformer	27
	5.2.1 5 2 2	ANSCHUSS MESSUMTORMER	27 21
	5.2.2	Sensoranschluss	31
•	5.2.2	Sensoranschluss	31
0	Uper	spannungsschutzmaßnanmen	3Z
1		triebnanme	34
	7.2	Benutzung der Bedienelemente	35
	72	Ratriahezuetända	
	7.3.1	Run-Modus	36
	7.3.3	Handprogrammer	37
	7.4.1	Menütasten	39
•	7.4.2 Doro		40
-	8 1	Zugriff auf den Programmiermodus	
	8,11	Anwendung der Menüebenen	
	812	Das direkte Bearbeiten von Parametern	
	8.2	Test Mode	∓∠ ∕\?
	83	Verwendung der seriellen Schnittstelle RS232	<u>۲</u> ۲ ۸۸
	0.5 8 4	Parametereinstellungen	
	0.4	гагашетеныгыншинден	40

9	Vorwa	ahlmenü (Ultra Wizard)	46
	9.1	Start des Vorwahlmenüs	46
	9.2	Füllstand / Volumen (Einstellung "1")	47
	9.2.1	NivuMaster als LV-3 / LV-5	47
	9.3	Pumpensteuerung/Differenz* und Mittelwertbildung*	47
	9.3.1	NivuMaster als LPD (nur Ultra 5)	48
	9.4	Menge (Einstellung "3")	48
10	Füllst	and / Volumen	49
	10.1	Start das Dragrammiermada	40
	10.1	Start des Programmermode	49
	10.1.1	Schnelistart	49
	10.2	Auswahl der Applikation	49
	10.2.1	Schnellstartmenü	50
	10.3	Beispiel 1: Füllstandüberwachung mit Alarm	53
	10.4	Beispiel 2: Füllstandüberwachung und Steuerung	54
	10.5	Beispiel 3: Volumen Applikation	56
	10.6	Parameterverzeichnis NivuMaster Füllstand / Volumen	58
	10.6.1	Menüdarstellungen	58
11	Parar	neterverzeichnis	64
	11.1	Anwendung	64
	11.1.1	Betriebsparameter	64
	11.1.2	Abmessungen	65
	11.1.3	mA-Eingang	65
	11.2	Relaisprogrammierung	66
	11.2.1	Relais Typ	67
	11.2.2	Alarmfunktionen	67
	11.2.3	Schaltfunktionen	69
	11.2.4	Steuerungsfunktionen	70
	11.2.5	Programmierung von optionalen Funktionen	70
	11.3	Infodaten	72
	11.3.1	Temperatur	72
	11.4	Volumenberechnung	72
	11.4.1	Stützpunkte	75
	11.4.2	Liste der Stützpunkte	76
	11.5	Anzeigeparameter	76
	11.5.1	Eingaben	76
	11.5.2	Fehlermode (Fail Safe)	77
	11.5.3	Statusanzeige	77
	11.5.4	Alarmmeldung	77
	11.5.5	Pumpenstatus	78
	11.5.6	Steuerungsstatus	78
	11.5.7	Optionsstatus	78
	11.5.8	Hilfsanzeige	78
	11.5.9	Balkenanzeige 3-Relais-Gerät	78
	11.5.10) Balkenanzeige 5-Relais-Gerät*	79
	11.6	mA-Ausgang	80
	11.6.1	Bereiche (P830)	80
	11.6.2	Zuordnung	80
	11.6.3	Grenzwerte	81
	11.6.4	Grenzen	81
	11.6.5	Feinabgleich	81
	11.6.6	Fehlermode für mA-Ausgang (separat)	82
	11.6.7	Messkanal	82
	11.7	Kompensation	82

Betriebsanleitung NivuMaster Serie

	11.8	Beispiele	83
	11.8.1	Füllstandmessung mit Volumenberechnung	
	11.8.2	Relaisprogrammierung	84
	11.8.3	Füllstandalarm	85
	11.8.4	Schalterfunktion	85
	11.8.5	Tendenzrelais	85
	11.8.6	Störmelderelais	86
	11.8.7	Tendenzmessung	86
12	Pump	ensteuerung	88
	12.1	Start des Programmiermode	
	12 1 1	Schnellstart (siehe Kapitel 10 1 1)	88
	12 1 2	Auswahl des Schnellstarts	88
	12.1.3	Auswahl der Applikation	
	12.1.4	Betriebsparameter	90
	12.1.5	Applikationsbeispiele	94
	12.2	Parameterverzeichnis für Pumpensteuerung	
	1221	Menüdarstellungen	102
	12.2.1	Betriebsparameter	109
	12.2.3	Abmessungen	
	12.2.4	mA-Eingang*	
	12.2.5	Relaisparameter	
	12.2.6	Alarme	113
	12.2.7	Pumpen (Füllstand)	116
	12.2.8	Steuerung	118
	12.2.9	Optional Funktion* (nur 5-Relais-Variante)	121
	12.2.10) Pumpenzeit* (nur 5-Relais-Variante)	122
	12.2.11	Gemeinsame Parameter	124
	12.2.12	2 Erweiterte Pumpenparameter* (nur 5-Relais-Variante)	124
	12.2.13	Startverzögerung* (nur 5-Relais-Variante)	124
	12.2.14	Stoppverzögerung* (nur 5-Relais-Variante)	124
	12.2.15	5 Testfunktion (nur 5-Relais-Variante)	125
	12.2.16	Schaltbereich* (nur 5-Relais-Variante)	125
	12.2.17	'Sturmbetrieb* (nur 5-Relais-Variante)	125
	12.3	Parameter für Datenaufzeichnung	126
	12.3.1	Berichte Summenzähler* (nur 5-Relais-Variante)	126
	12.3.2	Temperatur	126
	12.3.3	Aufzeichnung Pumpenbetrieb* (nur 5-Relais-Variante)	127
	12.4	Geförderte Mengen* (nur 5-Relais-Variante)	127
	12.4.1	Einrichtung* (nur 5-Relais-Variante)	128
	12.4.2	Umrechnung* (nur 5-Relais-Variante)	128
	12.4.3	Stützpunkte*	131
	12.4.4	Liste der Stützpunkte*	132
	12.5	Pumpeneffizienz* (nur 5-Relais-Variante)	133
	12.5.1	Einrichten*	133
	12.6	Parameter Anzeige	135
	12.6.1	Optionen	135
	12.6.2	Fehlermode	136
	12.6.3	Statusanzeige	136
	12.6.4	Bargraph*	138
	12.6.5	Summenzähler	138

13

12.7	Parameter mA-Ausgang	139
12.7.1	Bereich	139
12.7.2	Betriebsart	140
12.7.3	Grenzwerte	140
12.7.4	Grenzen	140
12.7.5	Feinabgleich	141
12.7.6	Fehlermode für mA-Ausgang separat	141
12.7.7	Zuordnung	141
12.8	Kompensation	142
12.9	Beispiele	143
12.9.1	Pumpensteuerung	143
12.9.2	Sonderfunktionen	147
Meng	e1	51
13.1	Start des Programmiermode	151
12.1.1	Schnollstart (siehe Kapitel 10.1.1)	151
10.1.1		151
13.2	Exponentialla Magagiariahtungan	151
13.3		155
13.3.1	Messstelle	155
13.3.2	Berechnungen	157
13.3.3	Beispiel 1: V – Wenr	158
13.4	Venturi	159
13.4.1	Messstelle	159
13.4.2	Berechnungen	160
13.4.3	Beispiel 2: Einschnurung mit U-Profil	162
13.5	Dünnwandiges Plattenwehr	163
13.5.1	Messstelle	163
13.5.2	Berechnungen	163
13.5.3	Beispiel 3: Rechteckwehr	165
13.6	Q/h-Kennlinie	167
13.7	Optionen bei der Mengenmessung	168
13.8	Geschwindigkeitsbereich	168
13.8.1	Messstelle	168
13.8.2	Berechnungen	170
13.9	Sondereinrichtungen	172
13.9.1	Messstelle	172
13.9.2	Berechnungen	173
13.10	Universelle Berechnungen	174
13.10.1	Messstelle	174
13.10.2	Berechnungen	174
13.11	Übersicht Parameter	175
13.11.1	Diagramm Menüsystem	175
13.12	Parameterliste	181
13.12.1	Applikationsparameter	181
13.12.2	mA-Eingang* (nur 5-Relais)	183
13.12.3	Relaisparameter	183
13.12.4	Alarme	185
13.12.5	Pumpensteuerung	188
13.12.6	Steuerung	190
13.12.7	Optionen	192
13.12.8	Gemeinsame Parameter	193
13.13	Parameter Datenaufzeichnung	194
13.13.1	Übersichten Summenzähler	194
13.13.2	Temperatur	194

Betriebsanleitung NivuMaster Serie

	13.14	OCM Parameter (Mengenmessung)	195
	13.14.1	Einrichten der primären Messeinrichtung	195
	13.14.2	Abmessungen	198
	13.14.3	Berechnungen	200
	13.14.4	Geschwindigkeit*	200
	13.14.5	Stutzpunkte	201
	13.14.6		201
	13.14.7		201
	13.15	Displayparameter	202
	13.15.1	Optionen	202
	13.15.2	Fehlermode	202
	13.15.3	Hilfsanzeige	203
	13.15.4	Summenzahler	204
	13.15.5	Balkenanzeige	205
	13.16	Parameter mA-Ausgang	205
	13.16.1	Bereich	205
	13.16.2	Zuordnung	205
	13.16.3	Grenzwerte	206
	13.16.4	Grenzen	206
	13.16.5	Feinabgleich	206
	13.16.6	Fehlermode	206
	13.17	Kompensation	207
	13.17.1	Offset	207
	13.17.2	Temperatur	207
	13.17.3	Schallgeschwindigkeit (für P-Serie)	208
	13.18	Stabilität	209
	13.18.1	Dämpfung	209
	13.18.2	Symbolanzeige	209
	13.18.3	Tendenzrate	209
	13.19	Echoverarbeitung	210
	13.19.1	Sensor 2	210
	13.20	Systemparameter	210
	13.20.1	Codewort	210
	13.20.2	Sicherungen	210
	13.20.3	Systeminfo	211
	13.20.4	Datum und Uhrzeit	211
	13.20.5	LED Farben	211
	13.20.6	Überwachung (Watchdog)	212
	13.20.7	Sommerzeit	213
	13.20.8	Service Alarm	214
	13.21	Kommunikation	215
	13.22	Test/Simulation	215
	13.22.1	Simulation	215
	13.22.2	Hardware	216
	13.23	Beispiele	218
	13 23 1	Managan have Demokflussensessing	218
14	10.20.1	Menden- bzw. Durchtlussmessund	
	Fehle	rbehehung	222
	Fehle	rbehebung	222
15	Fehler Param	rbehebung	222 223
15	Fehler Param	Applikation	222 223 223
15	Fehler Param 15.1 15.1.1	Applikation	222 223 223 223
15	Fehler Param 15.1 15.1.1 15.1.2	Applikation Abstände	222 223 223 223 223 223
15	Fehler Param 15.1 15.1.1 15.1.2 15.1.3	Applikation	222 223 223 223 223 223 223
15	Fehler Param 15.1 15.1.1 15.1.2 15.1.3 15.2	Mengen- bzw. Durchilussmessung rbehebung neterlisten Applikation Betrieb Abstände mA-Eingang* (optional) Pumpeneffizienz*	2223 223 223 223 223 223 223 223 223

15.3	Relais	.224	
15.3.1	Relais 1	.224	
15.3.2	Relais 2	.224	
15.3.3	Relais 3	.224	
15.3.4	Relais 4*	.225	
15.3.5	Relais 5*	.225	
15.4	Erweiterte Pumpenparameter* (nur bei 5 Relais)	.225	
15.4.1	Stoppverzögerung*	.225	
15.4.2	Nachlauf *	.225	
15.4.3	Startverzögerung*	.225	
15.4.4	Testfunktion*	.226	
15.4.5	Schaltbereich*	.226	
15.4.6	Sturmbetrieb*	.226	
15.5	Datenaufzeichnung	.226	
15.5.1	Übersichten Summenzähler	.226	
15.5.2	Aufzeichnung Pumpenbetrieb Pumpe 1*	.227	
15.5.3	Aufzeichnung Pumpenbetrieb Pumpe 2*	.227	
15.5.4	Aufzeichnung Pumpenbetrieb Pumpe 3*	.227	
15.5.5	Aufzeichnung Pumpenbetrieb Pumpe 4*	.227	
15.5.6	Aufzeichnung Pumpenbetrieb Pumpe 5*	.228	
15.5.7	Temperatur	.228	
15.6	Mengen	.228	
15.6.1	Einrichtung Pumpe*	.228	
15.6.2	Umwandlung	.228	
15.6.3	Stützpunkte	.229	
15.6.4	Tabellen	.230	
15.7	OCM Parameter	.230	
15.7.1	Einrichten der primären Messeinrichtung	.230	
15.7.2	Abmessungen	.231	
15.7.3	Berechnungen	.231	
15.7.4	Geschwindigkeit (optional)*	.231	
15.7.5	Stützpunkte	.231	
15.7.6	Tabellen	.233	
15.7.7	Mittlerer Durchfluss	.233	
15.8	Display	.233	
15.8.1	Optionen	.233	
15.8.2	Fehlermode	.233	
15.8.3	Statusanzeige	.233	
15.8.4	Summenzähler	.234	
15.8.5	Bargraph	.234	
15.9	mA-Ausgang	.234	
15.9.1	Bereich	.234	
15.9.2	Betriebsart	.234	
15.9.3	Grenzwerte	.234	
15.9.4	Grenzen	.234	
15.9.5	Feinabgleich	.234	
15.9.6	Fehlermode für mA-Ausgang separat	.235	
15.9.7	Zuordnung	.235	
15.10	Kompensation	.235	
15.10.1	Offset	.235	
15.10.2	? Temperatur	.235	
15.10.3	Schallgeschwindigkeit	.235	

	15.11 Stabilität	235
	15.11.1 Dämpfung	
	15.11.2 Symbolanzeige	235
	15.11.3 Tendenzrate	236
	15.11.4 Messfensterbreite	236
	15.12 Echoverarbeitung	236
	15.12.1 Status Sensor 1	
	15.12.2 Status Sensor 2*	236
	15.13 System	237
	15.13.1 Codewort	237
	15.13.2 Sicherungen	237
	15.13.3 Systeminfo	237
	15.13.4 Datum und Uhrzeit	237
	15.13.5 LED Farben	237
	15.13.6 Sommerzeit	237
	15.13.7 Service Alarm	238
	15.14 Kommunikation	239
	15.14.1 Einrichtung RS232	239
	15.14.2 Einrichtung RS485 (optional)	239
	15.15 Serviceparameter	240
16	Wartung und Reinigung	241
17	Notfall	241
18	Demontage/Entsorgung	241
19	Bildverzeichnis	242
20	Konformitätserklärung	243

1 Allgemeines

Wichtig

VOR GEBRAUCH SORGFÄLTIG LESEN!

AUFBEWAHREN FÜR SPÄTERES NACHSCHLAGEN!

Diese Betriebsanleitung für den Messumformer der NivuMaster Serie dient der bestimmungsmäßigen Verwendung des Gerätes und richtet sich ausschließlich an geschultes Fachpersonal.

Die Betriebsanleitung muss vor Einbau bzw. Anschluss sorgfältig gelesen und verstanden werden.

Diese Betriebsanleitung ist Bestandteil der Lieferung des Messumformers und muss dem Betreiber jederzeit zur Verfügung stehen. Die darin enthaltenen Sicherheitshinweise sind zu beachten.

Bei Veräußerung des Messumformers muss diese Betriebsanleitung mitgegeben werden.

Die Beschreibung über den Betrieb des gesamten Messsystems ist in den entsprechenden Betriebsanleitungen der Sensoren verfasst.

2 Sicherheits- und Gefahrenhinweise

2.1 Verwendung der Gefahrenhinweise

GEFAHR

Gefahrenhinweise

Gefahren durch elektrischen Strom

sind umrahmt und mit nebenstehendem Symbol gekennzeichnet.

sind umrahmt und mit einem Warndreieck gekennzeichnet.

Sie kennzeichnen eine Gefährdung mit hohem Risiko für einen elektrischen Schlag.

Sie kennzeichnen eine Gefährdung mit hohem Risiko für Leib und Leben.

WARNUNG

sind umrahmt und mit einem "STOP-Schild" gekennzeichnet.

Sie kennzeichnen eine Gefährdung mit mittlerem Risiko, können Lebensgefahr und schwere Körperverletzung zur Folge haben, wenn sie nicht vermieden werden.

sind umrahmt und mit einem "STOP-Schild" gekennzeichnet.

Sie kennzeichnen eine mögliche Gefahrensituation, die leichte oder mittelschwere Verletzungen oder Sachschaden zur Folge haben kann.

Wichtiger Hinweis

Kennzeichnet eine Situation, die Schäden an diesem Instrument zur Folge haben kann, wenn sie nicht vermieden wird.

Beinhaltet Informationen, die besonders hervorgehoben werden müssen.

Hinweis

Beschreibt wichtige Informationen für den Umgang mit dem Gerät. Kennzeichnet eine Situation, die keine Personenschäden zur Folge hat.

2.2 Sicherheits- und Vorsichtsmaßnahmen

Belastung durch Krankheitskeime

Auf Grund der häufigen Anwendung der Sensoren im Abwasserbereich, können Teile mit gefährlichen Krankheitskeimen belastet sein. Daher müssen beim Kontakt mit Kabel und Sensoren entsprechende Vorsichtsmaßnahmen getroffen werden.

Tragen Sie Schutzkleidung.

WARNUNG

Arbeitssicherheitsvorschriften beachten

Einbau, Montage, Inbetriebnahme und Wartung darf nur von entsprechend geschultem Personal vorgenommen werden. Vor Beginn der Montagearbeiten ist die Einhaltung sämtlicher Arbeitssicherheitsvorschriften zur prüfen.

Nichtbeachtung kann Personenschäden zur Folge haben.

Sicherheitseinrichtungen nicht verändern!

Es ist strengstens untersagt, die Sicherheitseinrichtungen außer Kraft zu setzen oder in ihrer Wirkungsweise zu verändern.

Nichtbeachtung kann Personen- oder Anlageschäden zur Folge haben.

2.3 Haftungsausschluss

Der Hersteller behält sich das Recht vor, den Inhalt des Dokuments, einschließlich dieses Haftungsausschlusses unangekündigt zu ändern und ist in keiner Weise für mögliche Folgen derartiger Änderungen haftbar.

Für Anschluss, Inbetriebnahme und Betrieb des NivuMaster sind die nachfolgenden Informationen und übergeordneten gesetzlichen Bestimmungen des Landes (z.B. in Deutschland VDE), wie gültigen Ex-Vorschriften sowie die für den jeweiligen Einzelfall geltenden Sicherheits- und Unfallverhütungsvorschriften zu beachten.

Sämtliche Handhabungen am Gerät, welche über die montage-, anschluss- und programmierbedingten Maßnahmen hinausgehen, dürfen aus Sicherheits- und Gewährleistungsgründen prinzipiell nur von NIVUS-Personal bzw. durch NIVUS autorisierte Personen oder Firmen vorgenommen werden.

2.4 Pflichten des Betreibers

Wichtiger Hinweis

In dem EWR (Europäischen Wirtschaftsraum) sind die nationale Umsetzung der Rahmenrichtlinie (89/391/EWG) sowie die dazugehörigen Einzelrichtlinien und davon besonders die Richtlinie (89/655/EWG) über die Mindestvorschriften für Sicherheit und Gesundheitsschutz bei Benutzung von Arbeitsmitteln durch Arbeitnehmer bei der Arbeit, jeweils in der gültigen Fassung, zu beachten und einzuhalten.

In Deutschland ist die Betriebssicherheitsverordnung einzuhalten.

Der Betreiber muss sich die örtliche Betriebserlaubnis einholen und die damit verbundenen Auflagen beachten.

Zusätzlich muss er die örtlichen gesetzlichen Bestimmungen für

- die Sicherheit des Personals (Unfallverhütungsvorschriften)
- die Sicherheit der Arbeitsmittel (Schutzausrüstung und Wartung)
- die Produktentsorgung (Abfallgesetz)
- die Materialentsorgung (Abfallgesetz)
- die Reinigung (Reinigungsmittel und Entsorgung)
- und die Umweltschutzauflagen einhalten.

Anschlüsse:

Stellen Sie als Betreiber vor dem Aktivieren des iXT sicher, dass bei der Montage und Inbetriebnahme, wenn diese vom Betreiber selbst durchgeführt werden, die örtlichen Vorschriften (z.B. für den Elektroanschluss) beachtet werden.

Hinweis

Diese Betriebsanleitung ist Bestandteil des Gerätes und muss für den Benutzer jederzeit zur Verfügung stehen.

Die darin enthaltenen Sicherheitshinweise sind zu beachten.

Hinweis

Für die Installation und den Betrieb des Gesamtsystems müssen Sie neben dieser Betriebsanleitung. zusätzliche Betriebsanleitungen für einen Füllstandssensor verwenden.

3 Gesamtansicht und Verwendung

3.1 Übersicht

- 4 Klemmenraum
- Abb. 3-1 Übersicht

3.2 Bestimmungsgemäße Verwendung

VORSICHT

Schäden durch nicht bestimmungsgemäßen Gebrauch

Das Messgerät ist ausschließlich zum unten aufgeführten Zweck bestimmt. Eine andere, darüber hinausgehende Benutzung oder ein Umbau der Sensoren ohne schriftliche Absprache mit dem Hersteller gilt als nicht bestimmungsgemäß.

Für hieraus resultierende Schäden haftet der Hersteller nicht. Das Risiko trägt allein der Betreiber.

Das Messgerät Typ NivuMaster inkl. zugehöriger Sensortechnik ist ein Ultraschall und Radar Messgerät zur Erfassung von Füllständen. Je nach Ausführung verfügt der NivuMaster über die Funktionen Pumpensteuerung, Differenzrechnung sowie Volumenkalkulation.

Alle zulässigen maximalen Grenzwerte, aufgeführt in Kapitel "Technische Daten", sind unbedingt zu beachten. Sämtliche von diesen Grenzwerten abweichenden Einsatzfälle, die nicht von NIVUS GmbH in schriftlicher Form freigegeben sind, entfallen aus der Haftung des Herstellers.

3.3 Gerätekennzeichnung

Die Angaben in dieser Betriebsanleitung gelten nur für den Gerätetyp, der auf dem Titelblatt angegeben ist.

Das Typenschild ist an der Unterseite des Gerätes befestigt und enthält folgende Angaben:

- Name und Anschrift des Herstellers
- CE-Kennzeichnung
- Kennzeichnung der Serie und des Typs, ggf. der Serien-Nr.
- Baujahr

Wichtig für alle Rückfragen und Ersatzteilbestellungen ist die richtige Angabe des Typs und der Serien-Nr. (ggf. Artikel-Nr.), nur so ist eine einwandfreie und schnelle Bearbeitung möglich.

Abb. 3-2 Typenschild der NivuMaster Serie

3.4 Gerätevarianten

Es stehen verschiedene Gerätevarianten zur Verfügung. Die Artikelnummer befindet sich auf dem Typenschild. Das Typenschild ist seitlich am Gehäuse angebracht.

Abb. 3-4 Typschlüssel für Messumformer NivuMaster 5 Relais

3.5 Technische Daten

Versorgungsspannung	115 V AC +5 % / -10 % 50/60 Hz,		
	230 V AC +5 % / -10 % 50/60 Hz,		
	Gleichspannung 18 – 36 V DC,		
	10 W maximale Leistung (typisch 6 W)		
Sicherungen	100 mA bei 170-240 V AC,		
	200 mA bei 85-120 V AC		
Gehäuse	Material: Polycarbonat, schwer entflammbar (UL91)		
	Gewicht: Wandaufbau ca. 1000 g, IP65		
	19"-Einschub ca. 1300 g, IP20		
Kabeleinführung beim 3- und	11 Kabeleinführungen, 8 Kabeleinführungen,		
5-Relais Gehäuse	4 x PG11, 1 x PG9, 2x PG11, 1 x PG9,		
	1 x 13.5 Unterseite, 1 x 13.5 Unterseite,		
	5 x PG11 Rückseite 4 x PG11 Rückseite		
Temperatur (Elektronik)	-20 °C bis +50 °C		
Lagertemperatur	-20 °C bis +60 °C		
Max. Luftfeuchtigkeit	80 % nicht kondensierend		
Sensorkabelverlängerung	2-adrig geschirmt (max. Länge 1000 m)		
Display	6-stell. numerische und 12-stell. alphanumerische Anzeige		
	sowie Bargraph mit Richtungsanzeige		
Messunsicherheit	6 mm oder 0.25 % des gemessenen Bereiches		
	(der großere Wert gilt);		
	in Kombination mit Sensortyp		
	• P-M3: 1 mm		
	• R-16: 2 mm		
Auflösung	1 bzw. 2 mm oder 0.1% vom Messbereich		
	(der größere Wert gilt – abhängig vom Sensor);		
	in Kombination mit Sensortyp		
	• P-M3: 0,5 mm		
	• R-16: 1 mm		
Max. Bereich	Abhängig von Applikation und Sensor		
	(max. 40 m beim Sensor P-40)		
Min. Bereich	Abhäng. von Appl. u. Sens. (min. 0,07 m P-M3) voll einstellb.		
Echoverarbeitung	DATEM (Digital Adaptive Tracking of Echo Movement) Soft-		
	ware (intelligente Störechoausblendung)		
Analogausgang:	ware (intelligente Störechoausblendung) 0/4 bis 20 mA galvanisch getrennter Ausgang (bis 150 V)		
Analogausgang:	ware (intelligente Störechoausblendung) 0/4 bis 20 mA galvanisch getrennter Ausgang (bis 150 V) Bürde 500 Ohm (einstellbar und anpassbar) 0.1 % Auflösung		
Analogausgang: Digitaler Ausgang	ware (intelligente Störechoausblendung) 0/4 bis 20 mA galvanisch getrennter Ausgang (bis 150 V) Bürde 500 Ohm (einstellbar und anpassbar) 0.1 % Auflösung RS232 Schnittstelle Voll Duplex		
Analogausgang: Digitaler Ausgang Wechselkontakte	 ware (intelligente Störechoausblendung) 0/4 bis 20 mA galvanisch getrennter Ausgang (bis 150 V) Bürde 500 Ohm (einstellbar und anpassbar) 0.1 % Auflösung RS232 Schnittstelle Voll Duplex 3/5 Wechselkontakte 5 A bei 240 V AC bei ohmscher Last 		
Analogausgang: Digitaler Ausgang Wechselkontakte Analogeingang	 ware (intelligente Störechoausblendung) 0/4 bis 20 mA galvanisch getrennter Ausgang (bis 150 V) Bürde 500 Ohm (einstellbar und anpassbar) 0.1 % Auflösung RS232 Schnittstelle Voll Duplex 3/5 Wechselkontakte 5 A bei 240 V AC bei ohmscher Last 0/4 bis 20 mA galvanisch getrennter Eingang (bis 150 V); 		
Analogausgang: Digitaler Ausgang Wechselkontakte Analogeingang (nur 5 Relais Variante)	 ware (intelligente Störechoausblendung) 0/4 bis 20 mA galvanisch getrennter Ausgang (bis 150 V) Bürde 500 Ohm (einstellbar und anpassbar) 0.1 % Auflösung RS232 Schnittstelle Voll Duplex 3/5 Wechselkontakte 5 A bei 240 V AC bei ohmscher Last 0/4 bis 20 mA galvanisch getrennter Eingang (bis 150 V); Leerlaufspannung 33 V, 22 V bei 4 mA, 14 V bei 20 mA (Be- 		
Analogausgang: Digitaler Ausgang Wechselkontakte Analogeingang (nur 5 Relais Variante)	 ware (intelligente Störechoausblendung) 0/4 bis 20 mA galvanisch getrennter Ausgang (bis 150 V) Bürde 500 Ohm (einstellbar und anpassbar) 0.1 % Auflösung RS232 Schnittstelle Voll Duplex 3/5 Wechselkontakte 5 A bei 240 V AC bei ohmscher Last 0/4 bis 20 mA galvanisch getrennter Eingang (bis 150 V); Leerlaufspannung 33 V, 22 V bei 4 mA, 14 V bei 20 mA (Benutzerprogrammier- und –einstellbar) 0.1 % Auflösung 		
Analogausgang: Digitaler Ausgang Wechselkontakte Analogeingang (nur 5 Relais Variante) On-board Programmierung	 ware (intelligente Störechoausblendung) 0/4 bis 20 mA galvanisch getrennter Ausgang (bis 150 V) Bürde 500 Ohm (einstellbar und anpassbar) 0.1 % Auflösung RS232 Schnittstelle Voll Duplex 3/5 Wechselkontakte 5 A bei 240 V AC bei ohmscher Last 0/4 bis 20 mA galvanisch getrennter Eingang (bis 150 V); Leerlaufspannung 33 V, 22 V bei 4 mA, 14 V bei 20 mA (Benutzerprogrammier- und –einstellbar) 0.1 % Auflösung Über integrierte Tastatur 		
Analogausgang: Digitaler Ausgang Wechselkontakte Analogeingang (nur 5 Relais Variante) On-board Programmierung PC-Programmierung	 ware (intelligente Störechoausblendung) 0/4 bis 20 mA galvanisch getrennter Ausgang (bis 150 V) Bürde 500 Ohm (einstellbar und anpassbar) 0.1 % Auflösung RS232 Schnittstelle Voll Duplex 3/5 Wechselkontakte 5 A bei 240 V AC bei ohmscher Last 0/4 bis 20 mA galvanisch getrennter Eingang (bis 150 V); Leerlaufspannung 33 V, 22 V bei 4 mA, 14 V bei 20 mA (Benutzerprogrammier- und –einstellbar) 0.1 % Auflösung Über integrierte Tastatur Über RS232 		
Analogausgang: Digitaler Ausgang Wechselkontakte Analogeingang (nur 5 Relais Variante) On-board Programmierung PC-Programmierung Fernprogrammierung	 ware (intelligente Störechoausblendung) 0/4 bis 20 mA galvanisch getrennter Ausgang (bis 150 V) Bürde 500 Ohm (einstellbar und anpassbar) 0.1 % Auflösung RS232 Schnittstelle Voll Duplex 3/5 Wechselkontakte 5 A bei 240 V AC bei ohmscher Last 0/4 bis 20 mA galvanisch getrennter Eingang (bis 150 V); Leerlaufspannung 33 V, 22 V bei 4 mA, 14 V bei 20 mA (Benutzerprogrammier- und –einstellbar) 0.1 % Auflösung Über integrierte Tastatur Über RS232 Handprogrammiergerät über Infrarot Fernbedienung 		
Analogausgang: Digitaler Ausgang Wechselkontakte Analogeingang (nur 5 Relais Variante) On-board Programmierung PC-Programmierung Fernprogrammierung	 ware (intelligente Störechoausblendung) 0/4 bis 20 mA galvanisch getrennter Ausgang (bis 150 V) Bürde 500 Ohm (einstellbar und anpassbar) 0.1 % Auflösung RS232 Schnittstelle Voll Duplex 3/5 Wechselkontakte 5 A bei 240 V AC bei ohmscher Last 0/4 bis 20 mA galvanisch getrennter Eingang (bis 150 V); Leerlaufspannung 33 V, 22 V bei 4 mA, 14 V bei 20 mA (Benutzerprogrammier- und –einstellbar) 0.1 % Auflösung Über integrierte Tastatur Über RS232 Handprogrammiergerät über Infrarot Fernbedienung (nur bei 19"-Ausführung) 		
Analogausgang: Digitaler Ausgang Wechselkontakte Analogeingang (nur 5 Relais Variante) On-board Programmierung PC-Programmierung Fernprogrammierung Datensicherung	 ware (intelligente Störechoausblendung) 0/4 bis 20 mA galvanisch getrennter Ausgang (bis 150 V) Bürde 500 Ohm (einstellbar und anpassbar) 0.1 % Auflösung RS232 Schnittstelle Voll Duplex 3/5 Wechselkontakte 5 A bei 240 V AC bei ohmscher Last 0/4 bis 20 mA galvanisch getrennter Eingang (bis 150 V); Leerlaufspannung 33 V, 22 V bei 4 mA, 14 V bei 20 mA (Benutzerprogrammier- und –einstellbar) 0.1 % Auflösung Über integrierte Tastatur Über RS232 Handprogrammiergerät über Infrarot Fernbedienung (nur bei 19"-Ausführung) über nicht flüchtigen RAM Speicher 		
Analogausgang: Digitaler Ausgang Wechselkontakte Analogeingang (nur 5 Relais Variante) On-board Programmierung PC-Programmierung Fernprogrammierung Datensicherung Handprogrammer für 19"	 ware (intelligente Störechoausblendung) 0/4 bis 20 mA galvanisch getrennter Ausgang (bis 150 V) Bürde 500 Ohm (einstellbar und anpassbar) 0.1 % Auflösung RS232 Schnittstelle Voll Duplex 3/5 Wechselkontakte 5 A bei 240 V AC bei ohmscher Last 0/4 bis 20 mA galvanisch getrennter Eingang (bis 150 V); Leerlaufspannung 33 V, 22 V bei 4 mA, 14 V bei 20 mA (Benutzerprogrammier- und –einstellbar) 0.1 % Auflösung Über integrierte Tastatur Über RS232 Handprogrammiergerät über Infrarot Fernbedienung (nur bei 19"-Ausführung) über nicht flüchtigen RAM Speicher Versorgung: 2 x AA Alkaline Batterien. 		

Lagerung

Halten Sie folgende Lagerbedingungen unbedingt ein:

Messumformer:	max. Temperatur:	+60 °C
	min. Temperatur:	-20 °C
	max. Feuchte:	80 %, nicht kondensierend

Schützen Sie bei der Aufbewahrung die Messtechnik vor korrosiven oder organischen Lösungsmitteldämpfen, radioaktiver Strahlung sowie starken elektromagnetischen Strahlungen.

3.6 Ausstattung

3.6.1 Lieferumfang

Zur Standard-Lieferung des NivuMaster Messsystems gehört:

- die Betriebsanleitung mit Konformitätserklärung. In ihr sind alle notwendigen Schritte für die Montage und den Betrieb des Messsystems aufgeführt
- ein NivuMaster Messumformer

Kontrollieren Sie weiteres Zubehör anhand des Lieferscheins.

3.6.2 Eingangskontrolle

Kontrollieren Sie den Lieferumfang sofort nach Eingang auf Vollständigkeit und augenscheinliche Unversehrtheit. Melden Sie eventuell festgestellte Transportschäden unverzüglich dem anliefernden Frachtführer. Senden Sie ebenfalls eine schriftliche Meldung an NIVUS GmbH Eppingen.

Unvollständigkeiten der Lieferung müssen innerhalb von 2 Wochen schriftlich an Ihre zuständige Vertretung oder direkt an das Stammhaus in Eppingen gerichtet werden.

Hinweis

Später eingehende Reklamationen werden nicht anerkannt!

3.6.3 Transport

Der Messumformer ist für den rauen Industrieeinsatz konzipiert. Schützen Sie ihn dennoch vor starken Stößen, Schlägen, Erschütterungen oder Vibrationen. Der Transport muss in der Originalverpackung erfolgen.

3.6.4 Rücksendung

Die Rücksendung der Gerätetechnik muss in der Originalverpackung frachtfrei zum Stammhaus NIVUS in Eppingen erfolgen.

Nicht ausreichend frei gemachte Sendungen werden nicht angenommen!

3.6.5 Einbau von Ersatz- und Verschleißteilen

Wir machen ausdrücklich darauf aufmerksam, dass Ersatz- und Zubehörteile, die nicht von uns geliefert wurden, auch nicht von uns geprüft und freigegeben sind. Der Einbau und/oder die Verwendung solcher Produkte können daher u. U. konstruktiv vorgegebene Eigenschaften Ihres Messsystems negativ verändern oder außer Kraft setzen.

Für Schäden, die durch die Verwendung von Nicht-Originalteilen und Nicht-Original-Zubehörteilen entstehen, ist die Haftung der Fa. NIVUS ausgeschlossen. Ersatz- bzw. Zubehörteile des Herstellers finden Sie in der gültigen Preisliste.

4 Aufbau und Funktion

4.1 Gehäusemaße

Der Messumformer ist in 3 verschiedenen Gehäusevarianten lieferbar.

Abb. 4-1 Wandaufbaugehäuse NivuMaster 5-Relais

Abb. 4-2 Wandaufbaugehäuse NivuMaster 3-Relais

Abb. 4-3 19"-Einschub

ESE Risiken:

VORSICHT

19"-Einschübe dürfen zur Minimierung Gefahren und ESE-Risiken nur nach Trennung vom Stromnetz aus dem Baugruppenträger gezogen werden.

Das Gerät könnte beschädigt werden!

Trennen Sie das Gerät vom Stromnetz!

Abb. 4-4 Gehäusemaße des Fronttafeleinbaus

Um den NivuMaster montieren zu können, müssen Sie einen Ausschnitt aus der Schalttafel herausschneiden:

Abb. 4-5 Ausschnitt für Schalttafelgehäuse

4.2 Funktionsbeschreibung

4.3 Allgemeines

Der NivuMaster der Ultra-Serie ist ein Ultraschall und Radar Messgerät zur Erfassung von Füllständen.

Zur Ausgabe der Messdaten stehen frei programmierbare Relais und ein galvanisch getrennter mA-Ausgang zur Verfügung.

Beim **Anschluss eines Ultraschallsensors**, sendet der NivuMaster einen Sendeimpuls zum Sensor. Der Ultraschallsensor, der senkrecht zur Materialoberfläche montiert wurde, erzeugt einen Ultraschallimpuls. Der Schall wird vom Messmedium reflektiert, als Echo vom Sensor empfangen und zum NivuMaster übertragen. Aus der Laufzeit zwischen dem Senden und dem Empfangen des Echos errechnet der NivuMaster den Abstand vom Sensor zum zu messenden Medium. Der errechnete Wert kann dann in der gewünschten Form (z.B. als Füllstand oder Abstand) ausgegeben werden.

Beim Anschluss eines **FMCW-Radarsensors** wird die Laufzeit der Radarsignale indirekt durch das Mischen der ausgesendeten und zurückreflektierten Radarsignale bestimmt. Der Abstand wird indirekt über die Zwischenfrequenz, die sich bei Überlagerung von aktueller Sendefrequenz und Empfangsfrequenz ergibt, ermittelt. Diese Frequenzdifferenz wird in ein Signalspektrum umgewandelt und der Abstand wird errechnet.

Je nach verwendetem Sensortyp, kann der NivuMaster in einem Bereich von 0.07 m bis 40 m Flüssigkeiten und Schüttgüter messen. Die Anzeige des Messwertes kann als **Füllstand**, **Leerraum** oder **Abstand** erfolgen. Zusätzlich steht eine Bargraphanzeige zur Verfügung. Das Display besitzt eine Hintergrundbeleuchtung, so dass das Ablesen der Messwerte auch bei schlechten Lichtverhältnissen jederzeit gewährleistet ist.

Die Relais sind frei programmierbar und können für verschiedenste Alarm- und Steuerfunktionen programmiert werden. Der NivuMaster besitzt einen galvanisch getrennten frei einstellbaren 0/4-20 mA-Ausgang, der zum Anschluss von externen Anzeigen oder zur Messwertübertragung auf eine SPS benutzt werden kann.

Über die RS232 Schnittstelle besteht die Möglichkeit den NivuMaster mit einem PC oder Laptop zu verbinden. Mit entsprechender Software kann der NivuMaster dann programmiert, sowie Echoprofile und Messwerte übertragen werden. Die Programmierung des NivuMaster erfolgt über die Tastatur am Gerät. Alternativ kann der Messumformer mit einem Handprogrammer, über eine berührungslose Infrarotschnittstelle, eingestellt werden. Mit einem Handprogrammiergerät können mehrere NivuMaster programmiert werden. Die eingestellten Parameter bleiben auch bei Spannungsausfall erhalten. Es besteht die Möglichkeit einen Parametersatz im Gerät intern zu speichern.

Die neuartige DATEM Software zur Echoanalyse ist hierbei der Garant für eine zuverlässige Messung. Das Ausblenden von Störechos ist Dank der einfachen Auswahlmöglichkeit des "richtigen Echos" ein Kinderspiel. Zeitaufwendige Inbetriebnahmen für das Abdecken von Störechos gehören der Vergangenheit an.

Trotz aller Vereinfachung bei der Programmierung ist es unerlässlich, diese Anleitung aufmerksam zu lesen! Sollten Sie noch keinerlei Erfahrungen im Umgang mit einem Ultraschall- oder Radarmessgerät besitzen, so ist es immer ratsam vor dem Einbau erste Erfahrung auf der "Werkbank" zu sammeln.

5 Installation und Anschluss

5.1 Montagevorschriften

- Achten Sie auf eine sachgemäße Montage!
- Befolgen Sie bestehende gesetzliche bzw. betriebliche Richtlinien!
- Unsachgemäße Handhabung kann zu Verletzungen und/oder Beschädigungen an den Sensoren führen!

Der Platz zur Montage des Messumformers muss nach bestimmten Kriterien ausgewählt werden.

Vermeiden Sie unbedingt:

- direkte Sonnenbestrahlung (gegebenenfalls Wetterschutzdach verwenden)
- Gegenstände, die starke Hitze ausstrahlen (maximale Umgebungstemperatur: +40 °C)
- Objekte mit starkem elektromagnetischem Feld (Frequenzumrichter o. ä.)
- korrodierende Chemikalien oder Gase
- mechanische Stöße
- Vibrationen
- radioaktive Strahlung
- direkte Installation an Geh- oder Fahrwegen

Bitte beachten Sie bei den Montagearbeiten, dass Elektronikbauteile durch elektrostatische Entladungen zerstört werden können.

5.1.1 Montage Wandaufbaugehäuse:

Die einfachste Art der Montage erfolgt durch Befestigung einer Hutschiene von 210 mm Länge und Aufrasten des Gehäuses.

Ebenfalls ist eine Montage durch 3 Schrauben möglich. Hierzu ist eine Flachkopfschraube mit einem Kopfdurchmesser von 5,5 ... 8,0 mm nötig. Diese ist nun 4 mm vorstehend in die Montageplatte einzuschrauben; das Gehäuse an diese Schraube einzuhängen und mit 2 weiteren Schrauben vom Klemmenanschlussraum her zu befestigen. Um den Gehäusedeckel problemlos öffnen zu können, muss bei der Montage links vom NivuMaster ein Abstand von 30 mm eingehalten werden.

5.1.2 Montage 19"-Einschub

Der 19"-Messumformer ist für den Einbau in einen 160 mm Baugruppenträger mit 84TE geeignet. Über eine Federleiste mit Schraubklemmen (separat zu bestellen), die hinten am Baugruppenträger angeschraubt wird, erfolgt dann der Anschluss des NivuMaster.

5.1.3 Montage Front-/Schalttafelgehäuse

Die NivuMaster Rackvariante ist ein Standard-10TE Schalttafelgehäuse für ein Standard-Rack 84TE (19"). Zum Einbau wird der NivuMaster über Montageschienen in den Baugruppenträger geschoben und in die Federleiste gesteckt. Danach wird der Einschub mit vier Schrauben an der Frontplatte am Rahmen des 19"-Racks festgeschraubt.

Hinweis

Verschließen Sie den Klemmraum des Vorortgehäuses mit dem mitgelieferten Deckel und den beiden Schrauben.

Achten Sie dabei auf die seitenrichtige Montage (stark abgeschrägte Seite nach oben) des Deckels. Bei unkorrektem oder falschem Verschluss kann Wasser oder Schmutz in den Klemmraum eindringen.

Der angegebene Schutzgrad ist dann nicht mehr gewährleistet.

Hinweise zur Vermeidung elektrostatischer Entladung (ESE)

ESE Risiken

Wartungsprozeduren, für die keine Stromversorgung des Geräts erforderlich ist, dürfen zur Minimierung Gefahren und ESE-Risiken nur nach Trennung vom Stromnetz ausgeführt werden.

Trennen Sie den NivuMaster vom Stromnetz!

Die empfindlichen elektronischen Komponenten im Geräteinneren können durch statische Elektrizität beschädigt werden, Das kann zur Beeinträchtigungen der Geräteleistung bis hin zum Ausfall des NivuMaster führen.

Der Hersteller empfiehlt die folgenden Schritte zur Vermeidung von Beschädigungen des Geräts durch elektrostatische Entladungen:

- Leiten Sie eventuell auf Ihrem Körper vorhandene statische Elektrizität ab, bevor Sie elektronische Komponenten des Geräts berühren.
- Vermeiden Sie unnötige Bewegungen, um den Aufbau statischer Ladungen zu vermindern.
- Tragen Sie ein Antistatik-Armband, das über ein Kabel geerdet ist, um Ihren Körper zu entladen und von statischer Elektrizität freizuhalten.
- Fassen Sie Komponenten, die gegen Aufladungen empfindlich sind, nur in einem Antistatik-Arbeitsbereich an. Verwenden Sie, falls möglich, antistatische Fußbodenbeläge und Arbeitsunterlagen.

5.2 Elektrische Installation

Wichtiger Hinweis:

Die Installation darf nur von qualifiziertem Fachpersonal durchgeführt werden. Dies dient der Vermeidung von Schäden am Gerät.

Wichtiger Hinweis:

Sichern Sie die Spannungsversorgung des NivuMaster separat mit 6A träge ab. Die Absicherung erfolgt unabhängig von anderen Anlageteilen oder Messungen. (z.B. durch Sicherungsautomaten mit Charakteristik >B<).

Für die elektrische Installation ist müssen die gesetzlichen Bestimmungen des Landes eingehalten werden (z.B. in Deutschland VDE 0100).

Vor dem Anlegen der Betriebsspannung ist die Installation von Messumformer und Sensor vollständig durchzuführen und auf Richtigkeit zu überprüfen. Die Installation sollte nur von fachkundigem und entsprechend ausgebildetem Personal vorgenommen werden. Weitergehende gesetzliche Normen, Vorschriften und technische Regelwerke sind zu beachten.

Alle äußeren Stromkreise, Kabel und Leitungen, welche an das Gerät angeschlossen werden, müssen eine Isolationsfestigkeit von mindestens 250 kOhm aufweisen. Der Querschnitt der Netzleitungen muss mindestens 0,75 mm² betragen und der IEC 227 oder IEC 245 entsprechen. Die Schutzart der Geräte entnehmen Sie bitte Kapitel 3.5 Technische Daten.

Die maximal zulässige Schaltspannung an den Relaiskontakten darf 240 V nicht überschreiten.

5.2.1 Anschluss Messumformer

Vor dem Erstanschluss ist mittels des Schraubendrehers ein leichter Druck auf die Schraube der Klemmverbindung auszuüben, damit diese sicher öffnet und eine korrekte Klemmverbindung gewährleistet wird.

Anschluss-Voraussetzungen

Der NivuMaster kann mit AC-Versorgung oder auch mit DC-Batterie-Versorgung arbeiten. Der AC-Variante ist entweder 85-115 V; 50/60 Hz oder 170-240 V 50/60 Hz, abhängig von der Position des Schiebeschalters.

Die DC-Variante ist 18-36 V. In beiden Fällen benötigt der NivuMaster 6 W Leistung (maximal 10 W).

Der NivuMaster muss außerhalb des Ex-Bereiches montiert werden. Der optionale Sensor kann in der Ex-Zone installiert werden.

Einen Klemmenplan finden Sie auch auf der Innenseite des Klemmenraumdeckels.

Abb. 5-2 Klemmenbelegung Wandaufbaugehäuse NivuMaster 3-Relais

Abb. 5-3 19"-Klemmenbelegung für NivuMaster 5-Relais

Abb. 5-4 19"-Klemmenbelegung für NivuMaster 3-Relais

Einen Klemmenplan finden Sie auch an der Seite der 19"-Einschubkassette. Der Spannungswahlschalter und die Hauptsicherung sind von der Unterseite der Einschubeinheit zugänglich. Alle Relais sind im spannungslosen Zustand gezeichnet.

ļ

Abb. 5-5 Klemmenbelegung für Fronttafeleinbau (PAT)

Kabeleinführung

Auf der Unterseite des NivuMaster Wandaufbaugehäuses befinden sich verschiedene perforierte Kabeleinführungen (siehe Kapitel 3.5). Zum Öffnen der Kabeleinführungen muss geeignetes Schneidwerkzeug verwendet werden. Vorsicht ist geboten, damit die Leiterplatte während des Vorganges nicht beschädigt wird. Ein Hammer darf nicht verwendet werden, da hier die Gefahr besteht, dass das Gehäuse beschädigt wird.

Es müssen passende Kabelverschraubungen und Kabelstopfen verwendet werden um den Schutzgrad zu erhalten.

5.2.2 Sensoranschluss

Allgemeines

Die Sensoren müssen gemäß der allgemeinen VDE Richtlinien montiert und angeschlossen werden.

Alle Sensoren sind optional auch in Ex-Ausführung erhältlich und somit für den Einsatz in Zone 0 bzw. 1 geeignet.

Verdrahten Sie den Sensor mit dem NivuMaster im Bereich des Klemmraums. Die Klemmennummern sind abhängig vom Gerätetyp wie folgt:

Rot	=	Spannung +22 \
Weiß	=	Signal
Schwarz	=	0 Volt
grün	=	Kabelschirm

Verlängerung Sensor

Bei Verwendung von 2adrig geschirmtem Verlängerungskabel muss das schwarze und grüne Kabel vom Sensor mit dem Kabelschirm des Verlängerungskabels verbunden werden.

Abb. 5-6 Verlängerung einer Sensorleitung der P- oder R-Serie

Für Zone 1 Anwendungen muss ein Sensor verwendet werden, der nach Sira 02ATEX5104X zertifiziert ist.

Der NivuMaster ist standardmäßig für die Speisung in Zone 1 zugelassen.

Für Zone 0 muss ein Sensor verwendet werden, der nach Sira 02ATEX2103X zertifiziert ist. Der Messumformer selbst muss auch für die Speisung von Zone 0 Sensoren zertifiziert sein.

6 Überspannungsschutzmaßnahmen

Für den wirksamen Schutz des NivuMaster Messumformers ist es erforderlich, Spannungsversorgung und mA-Ausgang mittels Überspannungsschutzgeräten zu sichern.

NIVUS empfiehlt für die Netzseite die Typen EnerPro 220Tr bzw. EnerPro 24Tr (bei 24V DC) sowie für den mA-Ausgang den Typ DataPro 2x1 24/24 Tr. Die Sensorseite lässt sich mit einem SonicPro gegen Überspannungen schützen.

Abb. 6-1 Anschluss Überspannungsschutz

Abb. 6-2 Überspannungsschutz NivuMaster mit Sensor

!

Beachten Sie den seitenrichtigen Anschluss des DataPro / EnerPro (p-Seite zum Messumformer hin) sowie eine korrekte, geradlinige Leitungszuführung. Die Ableitung (Erde) ist unbedingt in Richtung ungeschützte Seite auszuführen.

7 Inbetriebnahme

7.1 Allgemeines

Hinweise an den Benutzer

Bevor Sie einen NivuMaster der Ultra-Serie anschließen und in Betrieb nehmen, sind die folgenden Benutzungshinweise unbedingt zu beachten! Diese Betriebsanleitung enthält alle Informationen, die zur Programmierung und zum Gebrauch des Gerätes erforderlich sind. Sie wendet sich an technisch qualifiziertes Personal, welches über einschlägiges Wissen im Bereich der Messtechnik, Automatisierungstechnik, und Regelungstechnik verfügt. Bei eventuellen Schwierigkeiten in Bezug auf Montage, Anschluss oder Programmierung wenden Sie sich bitte an unsere Hotline oder unseren Inbetriebnahmeservice.

NIVUS GmbH Hotline Tel. 07262 9191-955 Kundencenter@nivus.com

Allgemeine Grundsätze

Die Inbetriebnahme der Messtechnik darf erst nach Fertigstellung und Prüfung der Installation erfolgen. Vor der Inbetriebnahme ist das Studium der Betriebsanleitung erforderlich, um fehlerhafte oder falsche Programmierungen auszuschließen. Machen Sie sich mit Hilfe der Betriebsanleitung mit der Bedienung des NivuMaster über Tastatur und Display, über Handprogrammer oder mittels PC vertraut, bevor Sie mit der Parametrierung beginnen.

Nach Anschluss von Messumformer und Sensor (entsprechend Kapitel 5.2.1 und 0) folgt die Parametrierung.

Die Bedienoberfläche des NivuMaster wurde so konzipiert, dass auch ein Laie sämtliche Grundeinstellungen für eine sichere Funktion des Gerätes selbst leicht durchführen könnte.

Bei umfangreichen Programmieraufgaben bzw. fehlendem Fachpersonal, sollte die Durchführung einer Programmierung durch den Hersteller erfolgen. Unser Inbetriebnahmeservice steht Ihnen dazu jederzeit gern zur Verfügung.

Dazu genügt in den meisten Fällen:

- Kurze Beschreibung der Messstelle
- Welche Sensoren werden verwendet?
- Was soll ausgegeben/angezeigt werden?

7.2 Benutzung der Bedienelemente

7.2.1 Anzeigebeschreibung

Die Anzeige liefert Information über den gegenwärtigen Betriebszustand und den Status der Fern-Kommunikation. Im Run Mode wird der gegenwärtige Füllstand und die Maßeinheit angezeigt, zusammen mit den Statusmitteilungen in Bezug auf den Sensor, Echoempfang und dem Fehler-Modus.

Zusätzlich können hier Statusmeldungen für Alarme, Pumpen usw. programmiert werden.

Im Programmiermodus wird das Display dazu benutzt, Informationen über die Menüs "System" und "Parameternummer" darzustellen. Parameterinhalte oder Werte können ebenfalls an dieser Stelle abgelesen bzw. eingegeben werden. Während dem Testmode dient das Display zur Anzeige des Simulationsmodus. Ein Bargraph wird ebenfalls bereitgestellt. Dieser zeigt einen optischen Messwert in % an.

- 1 Anzeige aktueller Betriebszustand
- 2

3

Hauptanzeige 6-stellig	
RUN-Modus =	Anzeige der gegenwärtigen Messung, die abhän- gig von Modus und Maßeinheit gewählt wird. Werte der Funktionstasten werden angezeigt.
Programmiermodus =	Anzeige der Parameter und des Parameterinhalts.
Testmodus =	Anzeige des simulierten Messwertes.
Hilfsanzeige 12-stellig, a	alphanumerisch
RUN-Modus =	Anzeige der in P104 gewählten Maßeinheit oder einer kurzzeitigen Relaisstatusänderung. Zeigt den Status des Sensors an. Anzeige der Funkti- onstasten Inhalte. Es können ebenfalls Meldun- gen für Alarme, Pumpen usw. programmiert und ausgegeben werden. Weitere Informationen beziehen Sie aus der Pa- rameterauflistung.
Programmiermodus =	Anzeige von Menü und Untermenü, Parameter- funktionen und weitere Auswahlmöglichkeiten.

Abb. 7-1 Anzeigebeschreibung		reibung
Programmiermodus =		Anzeige der aktuellen Menüebene. Hauptmenü (Pfeil nach unten); Untermenü (Pfeil nach oben und unten); Parameterebene (Pfeil nach oben).
	RUN-Modus =	Anzeige der aktuellen Füllstandänderung (stei- gend oder fallend).
6	Füllstandindikatoren	
5	Bargraph	Zeigt die aktuellen Füllstände in % an.
4	Kommunikationsstatus	Anzeige des aktuellen Kommunikationsstatus der Schnittstelle bzw. die Kommunikation zum Hand- programmer (nur bei Rack- und Panelversion).

Die beschriebenen Anzeigen sind im Standardgerät und bei der 19"-Ausführung des NivuMaster identisch.

7.3 Betriebszustände

Ein NivuMaster der Ultra-Serie besitzt 2 Haupt-Betriebszustände (Modes), den RUN-Modus und den Programmiermodus. Zusätzlich steht noch ein Testmodus zur Verfügung (siehe Kapitel 8.2). Dieser dient der Überprüfung der Einstellungen. Alle Modi werden in den nachfolgenden Kapiteln beschrieben.

7.3.1 Run-Modus

Dieser Modus wird genutzt, sobald der NivuMaster im Programmiermodus eingestellt wurde. Im Falle eines Stromausfalls kehrt der NivuMaster automatisch in diesen vorgegebenen Modus zurück.

Beim ersten Einschalten des NivuMaster erfasst der Messumformer den Abstand von der Sensorunterkante zum Messmedium und zeigt ihn entsprechend in der Anzeige in Metern an. Alle Relais sind werkseitig ausgeschaltet. Alle programmierten Relais schalten entsprechend ihrer Programmierung beim Erreichen der Schaltpunkte Ein bzw. Aus. Die LED's verändern ihre Farbe (es sei denn, sie sind abgeschaltet).

7.3.2 Programmiermodus

In diesem Modus werden die Einstellung des NivuMaster vorgenommen bzw. bereits programmierte Informationen geändert. Hierfür wird die eingebaute Tastatur benötigt. Im Falle einer 19"-Variante benutzen Sie bitte den Handprogrammer (beide Bedienelemente funktionieren identisch). Die Einstellungen können alternativ auch über den PC über die serielle RS232-Schnittstelle erfolgen. Einstellung jedes benötigten Parameter-Wertes liefert die Parameterbeschreibung.

Zugriff:

Vom Run-Mode gelangt man durch die Eingabe des Codewortes in den Programmiermode.

Drücken Sie die Tasten **1997** und bestätigen Sie mit der E-Taste.

7.3.3 Handprogrammer

Programmierung von 19"-Geräten mit dem Handprogrammer

Bei der Programmierung mit dem Handprogrammer ist zu beachten: Wird zur Programmierung des NivuMaster 19" ein Handprogrammer verwendet, so muss die Kommunikation zwischen Handprogrammer und NivuMaster zuerst freigegeben werden. Zu diesem Zweck legen Sie wie dargestellt den Handprogrammer auf den Bügel des NivuMaster auf. Dann bewegen sie ihn langsam entlang der Frontplatte nach oben. Dabei schaltet ein Magnet im Handprogrammer über einen Reedkontakt im NivuMaster die Kommunikation frei. Die Statusanzeige für die Kommunikation wechselt dann von "Communicator Off" zu "Remote Communicator On". Die Kommunikation ist freigegeben. Beim Verlassen des Programmiermodus den Vorgang wiederholen.

Abb. 7-2 19"-Gerät mit Handprogrammer

Nach dem Aktivieren der Kommunikation geben Sie den Zugangscode (siehe Kapitel 8.1) ein und drücken ENTER.

!

Erfolgt über eine Zeitdauer von 15 Minuten keine Eingabe im Programmiermode, so geht der NivuMaster automatisch zurück in den Betriebsmode.

PC-Handprogrammer

Für den NivuMaster 19" ist eine Software auf CD optional erhältlich. Legen Sie einfach die CD in Ihr entsprechendes Laufwerk ein und folgen Sie den Anweisungen auf dem Bildschirm.

Der Anschluss vom Computer zum NivuMaster erfolgt über die serielle RS232 Schnittstelle. Ein Anschlusskabel ist im Lieferumfang Ihrer Software enthalten. Der Anschluss am NivuMaster erfolgt über einen RJ11-Stecker. Die Anschlussbuchse befindet sich beim IP65-Gehäuse zwischen den Anschlussklemmen, beim Schalttafelgehäuse auf der Rückseite und beim 19"-Einschub auf der Frontseite (siehe Kapitel 5.2.1)

Um die Software nach der vollständigen Installation zu starten, doppelklicken Sie das entsprechende "Handprogrammer"-Symbol auf dem Desktop. der PC wird automatisch mit dem Gerät verbunden. Nach erfolgreicher Verbindung werden, die momentanen Messwerte angezeigt. Diese sind abhängig von Messmodus und dem gewählten Gerät.

Wenn Sie die Handprogrammer-Software benutzen können Sie das virtuelle Tastenfeld bedienen, indem Sie einen Klick über der entsprechenden "Taste" ausführen.

Alternativ können numerische Werte direkt über Ihre PC-Tastatur eingegeben werden, wobei "ENTER" der Taste >E< am NivuMaster entspricht; "ESC" der Taste >C<.

Die Tastatur des Handprogrammiergerätes mit Display ist identisch mit dem virtuellen Handprogrammer der PC-Software.

Abb. 7-3 virtueller Handprogrammer der PC-Software

7.4 Grundsätze der Bedienung

Es gibt 5 Funktions-Tasten auf dem Bedienfeld, die für einen schnellen Zugang verwendeter Parameter nur zum Anzeigen in Run-Modus genutzt werden. Einmaliges Drücken einer Taste zeigt den ersten Parameter an. Durch wiederholtes Drücken werden weitere Parameter angezeigt. Nach ca. 20 Sek. kehrt der NivuMaster in den RUN-Modus zurück.

Im Programmiermode haben die Tasten verschiedene Funktionen, die in der nachfolgenden Tabelle beschrieben werden.

Tasten	Betriebsmode*	Programmiermode		
Σ	Wenn die Applikation Durchfluss ist, wird	Keine Funktion		
	der nicht rücksetzbare Zähler angezeigt.			
	Wenn die Auswahl Pumpe ist, werden die			
	gesamten Pumpenstunden und die ein-			
	Zeinen Pumpenstunden angezeigt	Kaina Evelution		
	Störgeräusche. Mittel- und Spitzenwert	Keine Funktion		
n	Anzeige der Pumpenstarts; gesamt und	Rücksetzen des aktuellen		
	einzeln	Parameters		
		auf Werkseinstellung		
mA	Anzeige des mA-Wertes am Ausgang	Keine Funktion		
	Abhängig von der Anwendung. Anzeige	Umschalten der Relais-		
	von Leerraum, Füllstand, Abstand, Über-	schaltpunkte		
	fall, Durchfluss, Menge oder Bewertung	von %- auf Absolutwert-		
	der Füllstandänderung	anzeige		
+-	Keine Funktion	Bringt Sie zum zuletzt		
		eingestellten Parameter,		
		gleich nach Aktivierung		
		des Programmiermodus		
!	Anzeige von Geratetyp, Seriennummer	Eingabe von Dezimal-		
	und Softwarerevision	punkten		
* Es sind nicht immer alle Anzeigen verfügbar (abhängig von der Funktion des				
Gerates)				

7.4.1 Menütasten

Tasten	Funktion
$\overline{\bigcirc}$	Pfeiltasten, um sich im den Menüs nach links oder rechts zu bewe-
	gen.
	Wird im Testmode zum Simulieren von Füllstandveränderungen ver- wendet.
E	Bestätigen aller Aktionen (z.B. Auswahl einer Menüfunktion) oder
	beim Eingeben von Parameternummern oder Werten
	Bestätigen von Meldungen, die der Messumformer anzeigt sowie vor
	dem Wiederherstellen von Werkeinstellungen.
C	Mit dieser Taste gelangt man in den jeweils höher liegenden Parame-
	ter oder zurück in den RUN-Modus.
	Zum Löschen von falsch eingegebenen Werten.

7.4.2 Zahlentasten

∑ 123 n456 mA789 mA789 ↓-0↓i C < E ▶

Diese Tasten werden zur numerischen Eingabe von Werten etc. verwendet.

Abb. 7-4 Ansicht Bedientastatur

Es gibt zwei Möglichkeiten zum Bearbeiten von Parametern, entweder die Direkteingabe oder über die Menüebene. Beide werden nachfolgend beschrieben.

8 Parametrierung

8.1 Zugriff auf den Programmiermodus

Beim NivuMaster im Wandaufbaugehäuse und beim Schalttafelgehäuse gelangt man über die Tastatur und die Eingabe eines Zugangscodes in den Programmiermodus.

Geben Sie den Zugangscode ein und bestätigen diesen mit der E-Taste.

8.1.1 Anwendung der Menüebenen

Die Menüebenen wurden so konzipiert, um Änderungen der Parameter einfach durchführen zu können.

Es gibt 2 Ebenen: das Hauptmenü und das Untermenü.

Auf dem Display ist ein Textfeld, welches die Menüebene anzeigt. Durch Drücken einer Pfeiltaste scrollt das Display zwischen den obersten Ebenen (wie das nachfolgende Beispiel zeigt).

Wenn Sie die Cursor Taste drücken, können sie nach links oder rechts scrollen. Drücken Sie die E-Taste, wenn Sie den gewünschten Menüpunkt erreicht haben, um in das nachfolgende Untermenü zu gelangen.

Jede dieser Anwendungen in den Untermenüs werden später in dieser Anleitung noch genauer erklärt. Wenn Sie in ein Untermenü gewechselt haben, können Sie mit den Pfeiltasten scrollen. Durch Drücken der E-Taste gelangen Sie in den gewünschten Parameterabschnitt.

Sobald der passende Abschnitt erreicht ist, scrollt man durch die Parameter und gelangt zu den wichtigen Informationen. Um an diese Informationen zu gelangen, verwendet man die numerischen Tasten und drückt die E-Taste. Es erscheint die Nachricht "gespeichert" auf dem Display. Bei Verwendung der C-Taste werden die vorgenommenen Änderungen nicht übernommen und das Display zeigt "belassen".

Nach Beendigung der Eingaben, gelangt man über die C-Taste ins vorherige Menü. Um in den RUN-Modus (Betriebsmodus) zu gelangen, muss die C-Taste so oft gedrückt werden, bis am Display "Betrieb ?" angezeigt wird. Anschließend mit der E-Taste bestätigen.

Anhand der Ebenenanzeige (markiert durch Pfeile) neben dem Bargraph kann man ersehen, in welchem Teil des Menü-Systems man sich befindet.

Hauptmenü:	Abwärtspfeil ist an, um zu zeigen, dass sie sich nur
	abwärts bewegen können.
Untermenü:	Beide Pfeile zeigen an, dass Sie sich sowohl zum
	Hauptmenü als auch in die Parametereben bewegen
	können.
Parameterebene:	Aufwärtspfeil ist an, um zu zeigen, dass sie sich zum
	Untermenü bewegen können.
Parameter editieren:	Kein Pfeil markiert

8.1.2 Das direkte Bearbeiten von Parametern

Wenn nur die Nummer des Parameters bekannt ist, der bearbeitet werden soll, geben Sie einfach die Zahl in das Menü System ein. Durch Drücken der Zifferntaste können Parameter direkt eingeben werden. Auf der Parameterebene ist ein Eintragen der Parameternummern nicht möglich. Dies ist lediglich in Hauptund Untermenü möglich. Nach Eingabe einer Parameternummer zeigt das Display automatisch eine Textzeile mit Parameternamen, Nummer und Einheit sowie den minimalen und maximalen Ziffern an. Dabei zeigt die oberste Zeile den Wert, den Sie setzen.

Sie können den aufgerufenen Parameter ändern oder nur ablesen. Geänderte Parameter müssen mit der E-Taste bestätigt werden.

Durch Drücken der Taste +/- gelangt man in den zuletzt benutzten Parameter (kann nur aus dem Hauptmenü erfolgen).

8.2 Test Mode

Mit dem Simulationsmode lassen sich verschiedene Betriebszustände nachbilden. So können ohne Probleme angeschlossene Schaltungen auf Ihre Funktion überprüft werden. Dies geschieht unabhängig vom aktuellen Füllstand. Bei der Simulation kann zwischen einem "Softtest" und einem "Hardtest" ausgewählt werden. Beim "Softtest" reagieren die Relais nicht. Beim "Hardtest" reagieren auch die Relais. Die LED's verändern die Farbe, als würde man programmieren und der mA-Ausgang wechselt entsprechend des gewählten Betriebsmodus. Zum Testen der Logik des Systems (womit die Relais verbunden sind) verwendet man den "Hardtest".

Weiterhin kann bei der Simulation zwischen "Manuell" und "Auto" unterschieden werden. Bei der Einstellung "Auto" verändert sich der Füllstand innerhalb der programmierten Messspanne automatisch zwischen leerem Füllstand und vorher bestimmten Schaltpunkten, wie Pumpen- und Kontrollrelais (P980-P984). Wenn die Richtung der Füllstandbewegung geändert werden soll z.B. um über den Sollwert hinaus zu gehen, kann dies über die Pfeiltasten getan werden. Bei "Manuell" verändert sich der Füllstand durch Betätigen der Pfeiltasten. Der Zugriff auf den Simulationsmode ist nur über den Programmiermodus möglich. Mit Hilfe des Menüsystems wählt man den Menüpunkt "Test", anschließend den Untermenüpunkt "Simulation".

Der Wert des Parameters P980 wird folgendermaßen geändert:

- 1 = Manueller Softtest
- 2 = Automatischer Softtest
- 3 = Manueller Hardtest
- 4 = Automatischer Hardtest

Die Änderungsgeschwindigkeit und Schrittweite können über Parameter (P981 und folgende) vorgegeben werden.

Durch Drücken der C-Taste wird der Simulationsmode beendet. Das Gerät befindet sich wieder im Programmiermode.

Bei manueller Simulation verändert sich der Füllstand standardmäßig in 0,1 m-Schritten. Die Schrittweite kann über Parameter (P981) vorgegeben werden.

Bei automatischer Simulation können die Änderungsgeschwindigkeit und Schrittweite, um den sich der Füllstand verändert, in Meter (P981) oder in Minuten (P982) festgelegt werden.

Beispiel:

Die Schrittweite ist auf 0,1 m gesetzt und die Änderungsgeschwindigkeit auf 1 Minute. Der Füllstand verändert sich somit um jeweils 0,1 m / min. Um diese Schrittweite zu verändern, müssen die Werte in den Parametern entsprechend erhöht oder verringert werden.

8.3 Verwendung der seriellen Schnittstelle RS232

Die RS232 Schnittstelle dient der Kommunikation zwischen dem Messumformer und einem PC.

Über die RS232 Schnittstelle besteht die Möglichkeit verschiedene Daten und Parameter direkt auszulesen und zu sichern, ebenso wie die Darstellung von Echos. Hierzu ist die NIVUS-Software UltraPC zu verwendet.

Außerdem kann die Schnittstelle verwendet werden, um andere Informationen zu erhalten bzw. zu überwachen.

Die Schnittstelle wird wie folgt eingestellt:

- Übertragungsrate: 19200 Baud
- 8 Datenbits
- Keine Parität
- 1 Stop Bit

Das Gerät sollte, wie in Kapitel 5 Installation beschrieben, verbunden werden. Um Daten auslesen zu können, muss zuerst eine Verbindung vom PC zum NivuMaster hergestellt werden. Ist die Verbindung hergestellt, so zeigt der Nivu-Master die Meldung "Remote On" in der Anzeige. Nach Beendigen der Kommunikation zeigt der NivuMaster die Meldung "Communication Off".

Schnittstelle RS232 über ein Terminalprogramm

Folgende Befehle können eingegeben und danach mit (CR) ENTER bestätigt werden:

- Der NivuMaster antwortet auf die Befehle mit ok oder dem entsprechenden Wert. Andernfalls zeigt er "No"
- Um sich anzumelden geben sie den Befehl "/ACCESS:pppp" ein, wobei pppp der Zugangscode (P922) ist.
- Zum Abmelden gibt man /Access:OFF ein.
- Um einen Bestimmten Parameter abzurufen geben Sie /Pxxx ein (xxx steht für die entsprechende Parameternummer).
- Um einen Parameter zu verändern, lautet der Befehl: /Pxxx:yy (xxx = Parameternummer) yy entspricht dem Wert, der eingegeben werden soll.

Weitere Befehle sind:

/LEVEL	(zeigt den aktuellen Füllstand)
/SPACE	(zeigt den aktuellen Abstand)
/HEAD	(zeigt den aktuellen Durchflussmessung "Höhe)
/FLOW	(zeigt den aktuellen Durchflussmessung "Menge")
/TEMPERATURE	(zeigt die aktuelle Temperatur)
/CURRENTOUT	(zeigt den mA-Ausgangswert)
/CURRENTIN	(zeigt den mA-Eingangswert)
/BACKUP1	(bringt Backup von Parametern zu Bereich 1)
/BACKUP2	(bringt Backup von Parametern zu Bereich 2)
/RESTORE1	(Wiederherstellen von Parametern von Bereich 1)
/RESTORE2	(Wiederherstellen von Parametern von Bereich 2)

8.4 Parametereinstellungen

Vor der ersten Installation des NivuMaster oder Umsetzen bzw. Einstellen des Gerätes auf eine neue Applikation, wird empfohlen alle Parameter auf Werkseinstellung (P930) zurückzusetzen. Dies wird in der Parameterliste beschrieben.

Werkseinstellungen

Beim ersten Einschalten des NivuMaster misst dieser den Abstand von der Sensor-Sendefläche zur Mediumsoberfläche. Das Display zeigt diesen Abstand in Meter an. Alle Relais sind abgeschaltet.

Datum (P931) und Uhrzeit (P932) werden werkseitig eingestellt, sind jedoch zu überprüfen. Eine evtl. Änderung der Einstellung ist in der Parameterliste beschrieben.

Bei den meisten Applikationen ist es am Einfachsten, wenn der Tank oder das Becken geleert und eine Abstandmessung vom NivuMaster vorgenommen wird. Der gemessene Wert kann dann als Nullpunkt eingegeben werden.

Sobald die Installation abgeschlossen ist und der NivuMaster den korrekten Abstand zum Medium anzeigt, kann die Programmierung fortgesetzt werden. Es ist sinnvoll, alle erforderlichen Parameter zum selben Zeitpunkt zu programmieren. Das System macht anschließend einen Setup.

Beachten Sie:

Die Messspanne errechnet sich automatisch aus dem Leerzustand und sollte stets als Erstes eingestellt werden.

9 Vorwahlmenü (Ultra Wizard)

Das Vorwahlmenü dient zur Auswahl/Einstellung des gewünschten NivuMaster-Typs. Dies ist abhängig von den Anforderungen der Applikationen. Um an das Vorwahlmenü zu gelangen, muss vom RUN-Mode in den Programmiermode gewechselt werden. Bevor man mit der Programmierung des NivuMaster beginnt, muss die Gerätefunktion eingestellt werden! Im Betriebsmodus "RUN-Modus" erfolgt die Eingabe des CODE 1997 Dieser wird mit ENTER "E" bestätigt. Anschließend gelangt man in die Parametrierebenen, in den Menüpunkt "Vorwahlmenü". Dieser Punkt wird durch Drücken der Enter-Taste "E" aktiviert. Die aktuelle Gerätekonfiguration wird angezeigt (Werkseinstellung = Füllstand/Volumen) Bei Änderungen der Gerätekonfiguration erfolgt ein Reset durch Drücken der Taste "0". Dieser Vorgang wird mit ENTER "E" bestätigt Beispiel: Pumpe/Differenz oder Menge setzen:

Beispiel: Pumpe/Differenz oder Menge setze Eingabe "1" für Füllstand/Volumen Eingabe "2" für Pumpe/Differenz* Eingabe "3" für Menge

Nach Beendigung alle Eingaben mit ENTER "E" bestätigen.

Im Display wird "Loading" angezeigt, da nun die Gerätefunktionsspezifischen Parameter für "Füllstand/Volumen", "Pumpe/Differenz*" bzw. "Menge" geladen werden.

Dieser Vorgang dauert ca. 1 Minute!

Anschließend springt das Gerät wieder im Parametriermodus. Nun können die Applikationseinstellungen vorgenommen werden.

9.1 Start des Vorwahlmenüs

1997

Geben Sie den Zugangscode ein und bestätigen diesen mit der E-Taste.

Auswahlmöglichkeiten des Vorwahlmenüs

Im Display erscheint in der ersten Zeile "Vorwahlmenü". Dies muss mit der E-Taste bestätigt werden.

1 = Füllstand oder Volumen

- 2 = Pumpensteuerung oder Differenzmessung und Mittelwertbildung
- 3 = Mengenmessung

Sobald die gewünschte Applikation ausgewählt ist, wird der NivuMaster gerätespezifisch wie folgt konfiguriert:

Applikation

1 = Füllstand / Volumen (siehe Kapitel 10) 2 = Pump / *Diff* (siehe Kapitel 12) 3 = Menge (siehe Kapitel 13)

Gerätetyp

Bei Auswahl wird der NivuMaster als LV konfiguriert Bei Auswahl wird der NivuMaster als LPD konfiguriert Bei Auswahl wird der NivuMaster als LFP konfiguriert

9.2 Füllstand / Volumen (Einstellung "1")

Wenn Füllstand/Volumen für die Applikation benötigt wird (mit oder ohne eine Auswahl von Kontrollfunktionen), dann wird >1< ausgewählt und mit der E-Taste bestätigt. Das Display zeigt "Loading" und der NivuMaster ist nun als LV konfiguriert. Am Display werden Einheit, Seriennummer und Softwareversion kurz angezeigt und der Messumformer wechselt in den Schnellstart. Einzelheiten zur Programmierung des LV und die Beschreibung der Features und Parameter entnehmen Sie bitte dem Kapitel 10 Füllstand / Volumen.

9.2.1 NivuMaster als LV-3 / LV-5

Der NivuMaster LV ist ein Messgerät zur Erfassung von Füllstand, Abstand und zur Berechnung von Behältervolumen. Er verfügt über Kontrollfunktionen und deckt alle Behälterformen ab. Der LV verfügt auch über eine 32-Punkt Stützpunktlinie für die Berechnung von Nicht-Standard-Behältern.

Gemessen werden kann in einem Bereich von 0,12 bis 40 m von der Sensor-Sendefläche zur Mediumsoberfläche, abhängig vom verwendeten Sensor. Der LV kann Angaben über das Volumen oder den Durchschnittwert* zweier Messstellen machen.

Die 3/5 Relais mit benutzerdefinierten Grenzwerten können programmiert werden, um das Gerät für Pumpen- oder anderen Kontrollfunktionen zu aktivieren. Der mA-Ausgang ist vollständig programmierbar um jeden Punkt wie Füllstand, Leerraum und Abstand anzubieten.

* Der optionale mA-Eingang kann verwendet werden, um Drucksonden anzuschließen. So kann der NivuMaster auch für Applikationen eingesetzt werden, bei denen kein Ultraschall- oder Radarsensor eingesetzt werden kann.

9.3 Pumpensteuerung/Differenz* und Mittelwertbildung*

(Einstellung "2")

Für die Applikation Pumpensteuerung wird >2< ausgewählt und mit der E-Taste bestätigt. Das Display zeigt "Loading" und der NivuMaster ist nun als LPD konfiguriert. Am Display werden Einheit, Seriennummer und Softwareversion kurz angezeigt und der Messumformer wechselt in den Schnellstart. Einzelheiten zur Programmierung des LPD und die Beschreibung der Features und Parameter entnehmen Sie bitte dem Kapitel 12 Pumpensteuerung.

^{* =} Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

9.3.1 NivuMaster als LPD^{*} (nur Ultra 5)

Der LPD-5 verfügt über eine Vielzahl von Funktionen zur Pumpensteuerung. Der LPD-5 kann in einem Bereich von 0,12 bis 40 m von der Sendefläche zur Mediumsoberfläche messen. Dies ist abhängig vom verwendeten Sensor. Der LPD-5 kann Angaben über die Differenz zweier Messpunkte machen. Die 5 benutzerdefinierten Relais mit einzelnen Grenzwerten können programmiert werden, um das Gerät zur Pumpensteuerung oder anderen Kontrollfunktionen zu aktivieren.

Der mA-Ausgang ist vollständig programmierbar um jeden Punkt wie Füllstand, Abstand, Durchschnittswerte oder Differenzmessungen anzubieten. Der optionale mA-Eingang kann verwendet werden, um Drucksonden anzuschließen. So kann der NivuMaster auch für Applikationen verwendet werden, bei denen kein Ultraschall- oder Radarsensor eingesetzt werden kann.

9.4 Menge (Einstellung "3")

Wenn Menge (Durchfluss) für die Applikation benötigt wird, dann wird >3< ausgewählt und mit ENTER bestätigt. Das Display zeigt "Loading" und der NivuMaster ist nun als LFP konfiguriert.

Durch Bestätigung wird die Konfiguration abgeschlossen. Am Display werden Einheit, Seriennummer und Softwareversion kurz angezeigt und der Messumformer wechselt in den Schnellstart.

Einzelheiten zur Programmierung des LFP und die Beschreibung der Features und Parameter entnehmen Sie bitte dem Kapitel 10.6 Menge.

NivuMaster als LFP

Der NivuMaster LFP dient der Mengenmessung mit Datenprotokollierung und verfügt über eine Kontrollfunktion für den gesamten Bereich von Gerinnen, Wehren und Kanälen.

Durchflussberechnungen in Standardgerinnen sind mit der Software ebenso möglich, wie die Berechnung für eine Vielzahl anderer Gerinneformen. Bsp. Q = Geschwindigkeit x Fläche .

Der NivuMaster verfügt über eine benutzerdefinierte 32-Punkt Kalibrier-Routine, die eine Durchflussmessung auch in Nicht-Standard-Gerinnen und Wehren ermöglicht

Der NivuMaster LFP kann in einem Bereich von 0,07 bis 15 m von der Sensorsendefläche zur Mediumsoberfläche messen. Dies ist abhängig vom verwendeten Sensor.

Der NivuMaster LFP kann Angaben über Füllstand, Leerraum, Abstand, Höhe oder Durchfluss machen. Auch ein Summenzähler ist vorhanden.

Die 3/5 benutzerdefinierten Relais mit einzelnen Grenzwerten können programmiert werden, um das Gerät zur Pumpensteuerung, Probenehmerüberwachung, Fernabfragen oder anderen Kontrollfunktionen zu aktivieren. Der mA-Ausgang ist vollständig programmierbar um jeden Punkt bezüglich Füllstand, Leerraum, Abstand, Höhe oder Durchfluss anzubieten.

⁼ Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

10 Füllstand / Volumen

10.1 Start des Programmiermode

Zuerst muss vom RUN-Mode in den Programmiermode gewechselt werden. Dazu ist der Zugangscode einzugeben

Zugangscode eingeben und bestätigen.

10.1.1 Schnellstart

Das Display zeigt "Vorwahlmenü" in der ersten Zeile.

Durch Drücken der rechten Pfeiltaste wechselt der NivuMaster ins Schnellstartmenü. Mit der E-Taste gelangt man in die Menüfunktionen. Durch erneutes Drücken der E-Taste wechselt man ins allgemeinere Applikationsmenü. Am Display erscheint eine Anzahl von Auswahlmöglichkeiten.

Wurde bereits eine Aprilaktion eingerichtet, erscheint am Display eine Meldung über die aktuelle Einrichtung. Soll diese zurückgesetzt und neu gestartet werden, drückt man die Taste >0< (setzt alle Schnellstartparameter zurück). Andernfalls werden durch Drücken der ENTER-Taste die gesetzten Parameter übernommen.

10.2 Auswahl der Applikation

Es gibt zwei Arten von Applikationen, die später in diesem Kapitel beschrieben werden. Diese sind Füllstand und Volumen; beide mit der Möglichkeit von Kontroll- und Alarmfunktion.

- Soll eine Grundapplikation zur Füllstandmessung eingestellt werden, so wählt man die >1< (siehe 10.3 Beispiel 1)
- Soll eine Füllstandmessung mit Steuerrelais eingestellt werden, so wählt man die >1< und anschließend entweder "Control down" – durch Drücken der Taste 1 oder "Control up" – durch Drücken der Taste 2 (siehe Beispiel 2).
- Soll eine Volumenmessung eingestellt werden, so wählt man die >2< (siehe Beispiel 3).

Sobald die Applikation ausgewählt wurde, wird am Display eine Reihe von Fragen gestellt. Diese werden durch Wählen der entsprechenden Variante (siehe Abb. 10-1) beantwortet.

Sobald alle Fragen beantwortet sind, erscheint die Anforderung weiterer Informationen (wie in den nachfolgenden Tabellen beschreiben), um die Programmierung des Gerätes zu beenden.

10.2.1 Schnellstartmenü

Abb. 10-1 Schnellstart LV

Parameter	Werkseinstellung	Beschreibung
P101 Sensor	2 = P06	Verwendeter Sensor
P102 Material	1 = Flüssigkeit	Material im Behälter; entweder Flüssigkeit oder
		Schüttgut. Wenn das Schüttgut eben liegt, kann
		es wie Flüssigkeit programmiert werden.
P104 gemessene Einheit	1 = Meter	Ausgewählte Einheit, welche für die Program-
		mierung der Messung notwendig ist.
P105 Nullpunkt	6 m	Abstand von Sensorsendefläche zum Nullpunkt
		des Behälters.
P106 Messspanne	5.7 m	Eingabe der Messpanne vom Nullpunkt (0 %
		Füllung) zum maximalen Füllstand (100 % Fül-
		lung)

Wenn eine Volumen-Applikation gewählt wurde, erscheint die Anforderung weiterer Eingaben, die zur Berechnung des Volumens benötigt werden.

Parameter	Werkseinstellung	Beschreibung
P600 Behälterform	0 = flacher Boden	Form des Behälters, in dem gemessen werden
		soll.
P601-603 Behälterab-	Abhängig von der ge-	Eingabe der Behälterabmaße, wie erforderlich
maße	wählten Behälterform	
P605 Volumeneinheit	$3 = cm^{3}$	Eingabe der Volumeneinheit
P607 Max. Volumen	Nur Anzeige	Zeigt das berechnete Volumen in P605 Einhei-
		ten an.

Für weitere Auswahlmöglichkeiten ist die E-Taste zu drücken.

Parameter	Werkseinstellung	Beschreibung
Relais- Schaltpunkt	Werkseitig rechnet der	Entweder Alarm- oder Füllstandüberwachung.
Ein/Aus (x = Relais Nr.)	NM in % um den Füll-	Abhängig von der Applikation.
P2x3 / P2x4	stand zu bestimmen,	
	entsprechend der be-	
	reits eingegebenen	
	Spanne (siehe nach-	
	folgende Tabellen)	
P830 mA-Bereich	2 = 4-20 mA	Bestimmt den mA-Ausgangsbereich.
		0 = Aus
		1 = 0-20 mA
		2 = 4-20 mA
		3 = 20-0 mA
		4 = 20-4 mA
P870 Dämpfung steigend	10 m/min	Einstufung der maximalen Füllgeschwindigkeit
		(sitz oberhalb der tatsächlichen Füllgeschwin-
		digkeit des Behälters)
P871 Dämpfung fallend	10 m/min	Einstufung der minimalen Entleerungsge-
		schwindigkeit (sitz oberhalb der tatsächlichen
		Entleerungsgeschwindigkeit des Behälters)

Die voreingestellten Werte, die für die Bestimmung der Relaisschaltpunkte verwendet werden, (beim Setzen von Alarm- oder Kontrollrelais) werden über das Schnellstartmenü als eine %-Spanne eingegeben.

Applikation	Anzahl der Kontrollrelais	Relais-Nummer	Schaltpunkt	Schaltpunkt
			Ein	aus
Max. Alarm	1	Steuerrelais 1	80 %	20 %
Max. Alarm	2	Steuerrelais 1	80 %	20 %
		Steuerrelais 2	70 %	20 %
Max. Alarm	3	Steuerrelais 1	80 %	20 %
		Steuerrelais 2	70 %	20 %
		Steuerrelais 3	60 %	20 %
Max. Alarm	4*	Steuerrelais 1	80 %	20 %
		Steuerrelais 2	70 %	20 %
		Steuerrelais 3	60 %	20 %
		Steuerrelais 4*	50 %	20 %
Max. Alarm	5*	Steuerrelais 1	80 %	20 %
		Steuerrelais 2	70 %	20 %
		Steuerrelais 3	60 %	20 %
		Steuerrelais 4*	50 %	20 %
		Steuerrelais 5*	40 %	20 %

Applikation	Anzahl der Kontrollrelais	Relais-Nummer	Schaltpunkt	Schaltpunkt
			Ein	aus
Min. Alarm	1	Steuerrelais 1	20 %	80 %
Min. Alarm	2	Steuerrelais 1	20 %	80 %
		Steuerrelais 2	30 %	80 %
Min. Alarm	3	Steuerrelais 1	20 %	80 %
		Steuerrelais 2	30 %	80 %
		Steuerrelais 3	40 %	80 %
Min. Alarm	4*	Steuerrelais 1	20 %	80 %
		Steuerrelais 2	30 %	80 %
		Steuerrelais 3	40 %	80 %
		Steuerrelais 4*	50 %	80 %
Min. Alarm	5*	Steuerrelais 1	20 %	80 %
		Steuerrelais 2	30 %	80 %
		Steuerrelais 3	40 %	80 %
		Steuerrelais 4*	50 %	80 %
		Steuerrelais 5*	60 %	80 %

Relaisfunktion	Relaisbezeichnung	Schaltpunkt Ein	Schaltpunkt aus
Alarm	HiHi	90 %	85 %
Alarm	High	85 %	80 %
Alarm	Low	10 %	15 %
Alarm	LoLo	5 %	10 %

*

⁼ Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

10.3 Beispiel 1: Füllstandüberwachung mit Alarm

Ein Behälter beinhaltet eine Flüssigkeit, die sich in der Füllhöhe ändert und die überwacht werden soll.

Der Max. Alarm soll dabei auf Relais 1 geschaltet werden, der Min. Alarm auf Relais 2.

Abb. 10-2 Füllstandüberwachung mit Alarm

Wenn der Füllstand bis auf 2.38 m steigt, zieht das Relais 1 an, bis der Füllstand auf 2.24 m absinkt. Wenn der Füllstand bis auf 0,28 m abfällt zieht Relais 2 an, bis der Füllstand wieder auf 0,42 m ansteigt. Das Display zeigt den Füllstand im Tank an.

Der mA-Ausgang stellt den Füllstand dar. Dabei sind 4 mA = Leerniveau (0 %) und 20 mA = 2.8 m (100 %).

Um den NivuMaster LV nach Beispiel 1 (Füllstandüberwachung mit Alarm) im Schnellstart zu programmieren, geht man wie in Kapitel 10.1.1 beschrieben vor:

Abfrage	Auswahlmöglichkeit
Applikation	1 = Füllstandapplikation
Steuerung	1 = Entleeren
Anzahl der Alarmmeldungen	2 = 2 Alarmmeldungen
Typ Alarm 1	1 = Max. Alarm
Alarm Nr. 1	1 = schaltet Relais 1
Typ Alarm 2	2 = Min. Alarm
Alarm Nr. 2	2 = schaltet Relais 2
Sensortyp (P101)	2 = P-06
Material (P102)	1 = Flüssigkeit
Maßeinheit (P104)	1 = Meter
Leerniveau (P105)	3.5 (Meter)
Spanne	2.8 (Meter)

Wenn auf dem Display "weitere Optionen drücke Enter" erscheint, drücken Sie die E-Taste um neue Werte auf die Schaltpunkte zu übertragen.

Alternativ kann auf den entsprechenden Relais-Schaltpunkt über das Hauptmenü oder direkt über die Parameternummer zugegriffen werden.

Relais-Schaltpunkte, die nicht die genauen Erfordernisse der Applikation erfüllen, können modifiziert werden.

Die Programmierung ist nun vollständig und das Gerät kann in den Run-Mode zurückgesetzt werden. Drücken Sie die C-Taste, bis auf dem Display "Run-Mode" steht. Danach mit der E-Taste bestätigen.

10.4 Beispiel 2: Füllstandüberwachung und Steuerung

Ein Behälter beinhaltet eine Flüssigkeit, die sich in der Füllhöhe ändert und die überwacht werden soll.

Wenn der Füllstand einen bestimmten Punkt erreicht hat, wird der Behälter leergepumpt und in einen anderen Prozess umgewechselt. Die Pumpe wird Relais 1 zugeordnet, der Max. Alarm liegt auf Relais 2 und der Min. Alarm liegt auf Relais 3.

Abb. 10-3 Füllstandüberwachung und Steuerung

Die Pumpe (Relais 1) schaltet ein, wenn der Füllstand 2,24 m erreicht hat. Sie schaltet aus, wenn der Füllstand auf 0,7 m abgesunken ist (Entleerung). Wenn der Füllstand 2,38 m erreicht hat schaltet der Max. Alarm (Relais 2) bis der Füllstand auf 2,24 m absinkt. Sinkt der Füllstand jedoch bis auf 0,28 m, schaltet der Min. Alarm (Relais 3) bis der Füllstand wieder bei 0,42 m ankommt.

Wahlweise können bei einer Befüllungsapplikation die Schaltpunkte andersherum ausgegeben werden. Das heißt die Pumpe schaltet bei 0,7 m ein und bei 2,24 m wieder aus.

Das Display zeigt den aktuellen Füllstand im Tank an.

Der mA-Ausgang stellt den Füllstand dar. Dabei sind 4 mA = Leerniveau (0 %) und 20 mA = 2.8 m (100 %).

Um den NivuMaster nach Beispiel 2 (Füllstandüberwachung und Steuerung^{*}) im Schnellstart zu programmieren, geht man wie in Kapitel 10.1.1 beschrieben vor.

Abfrage	Auswahlmöglichkeit
Applikation	1 = Füllstandapplikation
Steuerung	1 = Entleeren
Anzahl der Steuerungen	1 = 1 Relais
Steuerung Nr. 1	1 = schaltet Relais 1
Anzahl der Alarmmeldungen	2 = 2 Alarme
Typ Alarm 1	1 = Max. Alarm
Alarm Nr. 1	2 = schaltet Relais 2
Typ Alarm 2	2 = Min. Alarm
Alarm Nr. 2	3 = schaltet Relais 3
Sensortyp (P101)	2 = P-06
Material (P102)	1 = Flüssigkeit
Maßeinheit (P104)	1 = Meter
Leerniveau (P105)	3.5 (Meter)
Spanne	2.8 (Meter)

Die Programmierung ist nun vollständig und das Gerät kann in den Run-Mode zurückgesetzt werden. Drücken Sie >Cancel<, bis auf dem Display "Betrieb" steht, danach mit ENTER bestätigen.

Relais-Schaltpunkte, die nicht die genauen Erfordernisse der Applikation erfüllen, können modifiziert werden.

Wenn auf dem Display "weitere Optionen drücke Enter" erscheint, drücken Sie die Enter-Taste um neue Werte auf die Schaltpunkte zu übertragen. Alternativ kann auf den entsprechenden Relais-Schaltpunkt über das Hauptmenü oder direkt über die Parameternummer zugegriffen werden.

^{* =} Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

10.5 Beispiel 3: Volumen Applikation

Ein zylindrischer Tank mit einem Durchmesser von 2 m und einem flachen Boden, welcher typisch für kurzzeitige Lagerung von Flüssigkeiten ist. Gemessen werden soll das Volumen der Flüssigkeit.

Hierfür benötigt man ebenfalls einen Min. und Max. Alarm. Wenn der Füllstand einen bestimmten Punkt erreicht hat, soll der Behälter (mit gleichzeitiger Umfüllung in einen anderen Arbeitsvorgang) leer gepumpt werden.

Abb. 10-4 Volumen Applikation

Die Pumpe (Relais 1) schaltet ein, wenn der Füllstand 2,24 m erreicht hat. Sie schaltet aus, wenn der Füllstand auf 0,7 m abgesunken ist (Entleerung). Wenn der Füllstand 2,38 m erreicht hat schaltet der Max. Alarm (Relais 2) bis der Füllstand auf 2,24 m absinkt. Sinkt der Füllstand jedoch bis auf 0,28 m, schaltet der Min. Alarm (Relais 5^{*}) bis der Füllstand wieder bei 0,42 m ankommt. Das Display zeigt das aktuelle Volumen der Flüssigkeit im Tank an. Der mA-Ausgang stellt das Volumen dar wobei 4 mA = leer (0 %) und 20 mA = Maximales Volumen (100 %).

Um den NivuMaster nach Beispiel 3 (Volumen Applikation mit Steuerung) im Schnellstart zu programmieren, geht man wie in Kapitel 10.1.1 beschrieben vor.

Abfrage	Auswahlmöglichkeit
Füllstand / Volumen	2 = Volumenapplikation
Steuerung	1 = leerpumpen
Anzahl der Steuerungen	1 = 1 Relais
Steuerung Nr. 1	1 = schaltet Relais 2
Anzahl der Alarme	2 = 2 Alarme
Typ Alarm 1	1 = Max. Alarm
Alarm Nr. 1	4 = schaltet Relais 4*
Typ Alarm 2	2 = Min. Alarm

= Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

Alarm Nr. 2

Spanne

Behälterform

Sensortyp (P101) Material (P102)

Maßeinheit (P104)

Leerniveau (P105)

Ψ.
L.
n n
J
0
l
\mathbf{Q}
(1)
<u> </u>
in i
P
ш.

0 = zylindrisch mit flachem Boden Behältermaße Eingabe der Behältermaße (abhängig von der gewählten Behälterform) Volumeneinheit Auswahl, wie notwendig Zeigt das mailmaximale Volumen, welches Max. Volumen (nur zum Abledurch den NivuMaster berechnet wurde sen)

5 = schaltet Relais 5

2 = P-06

1 = Meter

3.5 (Meter)

2.8 (Meter)

1 = Flüssigkeit

Dieses Beispiel zeigt einen zylindrischen Behälter mit flachem Boden. Eine Beschreibung anderer wählbarer Behälterformen (siehe P600 = Behälterform) finden Sie im Kapitel 10.6 Parameterverzeichnis.

Einige Behälterformen benötigen die Eingabe weiterer Maße / Dimensionen. Diese werden während des Schnellstarts abgefragt.

Die Programmierung ist nun vollständig und das Gerät kann in den Run-Mode zurückgesetzt werden. Drücken Sie die C-Taste, bis auf dem Display "Betrieb" steht. Danach mit der E-Taste bestätigen.

Relais-Schaltpunkte, die nicht die genauen Erfordernisse der Applikation erfüllen, können modifiziert werden.

Wenn auf dem Display "weitere Optionen drücke Enter" erscheint, drücken Sie die E-Taste um neue Werte auf die Schaltpunkte zu übertragen.

Alternativ kann auf den entsprechenden Relais-Schaltpunkt über das Hauptmenü oder direkt über die Parameternummer zugegriffen werden.

⁼ Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

10.6 Parameterverzeichnis NivuMaster Füllstand / Volumen

Dieser Abschnitt zeigt alle im NivuMaster verfügbaren Parameter, wie sie im Menüsystem erscheinen.

10.6.1 Menüdarstellungen

Nachfolgend wird eine Reihe von Darstellungen gezeigt, um sich in den verschiedenen Teilen des Menüsystems zurecht zu finden.

Hauptmenü

Applikation

⁼ Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

Relaisprogrammierung

Infodaten

⁼ Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

Volumen

Anzeige

⁼ Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

mA-Ausgang

Kompensation

Stabilität

⁼ Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

Echoverarbeitung

System

⁼ Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

Gerätekommunikation

Test/Simulation

^{* =} Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

11 Parameterverzeichnis

Dieser Abschnitt beschreibt alle verfügbaren Parameter und deren Funktionen bei Einstellung des NivuMaster als LV-3 / LV-5. Jeder Parameter kann durch Drücken der Taste "n" auf Werkseinstellung zurückgesetzt werden. Die Werkseinstellung der Parameter ist entweder mit "F=" gekennzeichnet oder **fett** hinterlegt.

11.1 Anwendung

11.1.1 Betriebsparameter

Nr.	Parameter	Auswahl	Beschreibung
100	Betriebsmode F = 1	1 = Abstand	Display zeigt den Abstand zum Medium
		2 = Füllstand	Zeigt, wie voll der Behälter ist
		3 = Leerraum	Zeigt, wie leer der Behälter ist
		4 = Mittelwert [*]	*Zeigt den durchschnittlichen Füllstand von
			2 Messpunkten
		5 = Volumen	Zeigt das Volumen des Behälters
		6 = Volumen* (gemit-	*Zeigt das Volumen des Behälters als Mit-
		telt)	telwert zwischen 2 Messpunkten
101	Sensortyp F = 2	0 = Zusatz (optional*)	Die Zahlen der Sensorbezeichnungen ste-
		1 = P03, 2 = P06 ,	hen für die max. Messdistanz in Meter
		3 = P10, 4 = P15,	
		5 = P25, 6 = P40	
		7 = PS6, 8 = P-M3	
		11 = PR-16	
102	Material F = 1	1 = Flüssigkeit	Zum Messen von Flüssigkeit und ebenen
			Schüttgütern
		2 = Schüttgut	Zum Messen von Schüttgut, das gehäuft
			oder schräg eingefüllt ist
103*²	Eingang 2 (optional)	Siehe P101 Auswahl	
		des Sensortyps	
*²Zu P	103: dieser 4-20 mA-Eing	gang ist optional erhältlich	und wird für zusätzliche Sensoren (z.B.
Drucksonden) verwendet, wenn kein Ultraschall- oder Radarsensor eingesetzt werden kann. Hierzu			
muss i	n P101 >0< ausgewählt v	werden	

^{*} = Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

11.1.2 Abmessungen

Nr.	Parameter	Auswahl	Beschreibung
104	Einheiten F = 1	1 = m , 2 = cm, 3 = mm,	Messung erfolgt in der ausgewählten Ein-
		4 = ft, 5 = in.	heit
105	Nullpunkt F= 6	Eingabe des maximalen Abstands von der Sendefläche zum ge-	
		wünschten Nullpunkt. Die	e Einheit (= Messbereich) entspricht der
		Auswahl in P104.	
		Wichtige Information:	
		Wenn der Nullpunkt (P10	05) verändert wird, betrifft dies auch die Wer-
		te der Messspanne und	Relaisschaltpunkte. Wird der Nullpunkt nach
		Abschluss der Programn	nierung nochmals korrigiert, so erfolgt die
		Abfrage:	
		Schaltpunkte neu berech	inen?
		0= Nein Die Absol Nullpunkt)	utwerte bleiben (bezogen auf den neuen erhalten.
		1= Ja Die Absol Nullpunkt)	utwerte werden (bezogen auf den neuen neu berechnet.
106	Messspanne	Eingabe der Messspanne vom Nullpunkt (P105) zum maximalen	
	F= 5.7	Messwert (100 %). Der Wert wird automatisch berechnet, indem er vom Messbereich	
		(P105) den Wert der Aus	sblendung (P107) subtrahiert.
107	Nahausblendung	Eingabe des Abstandes vor der Sendefläche des Ultraschall- oder	
	F= 0.3	Radarsensors, in dem ei	ne Messung aufgrund des Ausschwingens
		des Sensors nicht möglig ten Sensor (P101).	ch ist. Der Wert ist abhängig vom ausgewähl-
		Er kann bei Bedarf vergr	ößert, jedoch niemals kleiner als die Werks-
		eingabe eingegeben wer	den. Bsp. P06 = 0,3 m
		Die Eingabe des Werte	erfolgt in der programmierten Maßeinheit
		(P104)	5 . 5
108	Enderweiterung	Eingabe des Bereiches i	n Prozent, um den der Messbereich (Ab-
	F = 20	stand zum Nullpunkt) erv	veitert wird. Dadurch können auch Echos
		unterhalb des eingestellt	en Nullpunktes noch ausgewertet werden.
		F = 20 %	
		Wenn die gemessene O	berfläche sich unter den Nullpunkt erstrecken
		kann, kann die Endausb	lendung auf ein Maximum von 100 % vom
		Nullpunkt gesteigert wer	den.
		Der Parameter wird imm	er mit 0 % vom Nullpunkt ausgegeben.

11.1.3 mA-Eingang^{*}

Nr.	Parameter	Auswahl	Beschreibung
119	mA-Zustand	0 = mA OK	Anzeige des aktuellen Zustandes (Status)
	wenn P101 = 0 (zu-	1 = mA offen	des mA-Eingangs.
	sätzlich)	2 = mA kurz	
120	mA bei Min.	F = 4 mA	Eingabe des mA-Wertes, der dem Null-
			punkt der verwendeten Füllstandmessung
			(z.B. einer Drucksonde) entspricht.
121	mA bei Max.	F = 20 mA	Eingabe des mA-Wertes, der dem Voll-
			punkt der verwendeten Füllstandmessung
			(z.B. einer Drucksonde) entspricht.

* = Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

122	Min. Füllstand	F = 0	Eingabe des Absolutwertes, der dem Null-
			punkt der verwendeten Füllstandmessung
			(z.B. einer Drucksonde) entspricht.
123	Max. Füllstand	F = 6	Eingabe des Absolutwertes, der dem Voll-
			punkt der verwendeten Füllstandmessung
			(z.B. einer Drucksonde) entspricht.
124	Min. Abgleich	Dieser Parameter erlaubt, den NivuMaster auf Min. mA-Eingang zu	
		"kalibrieren". Wenn der erwartete untere Wert, vom Gerät zum mA-	
		Eingang, nicht angezeigt wird, kann der Abgleich mit Hilfe der Para-	
		meter festgelegt werden.	
125	Max. Abgleich	Dieser Parameter erlaubt, den NivuMaster auf Max. mA-Eingang zu	
		"kalibrieren". Wenn der erwartete obere Wert, vom Gerät zum mA-	
		Eingang, nicht angezeigt	wird, kann der Abgleich mit Hilfe der Para-
		meter festgelegt werden.	

11.2 Relaisprogrammierung

Die Relaisparameter sind für alle Relais identisch, mit Ausnahme der zweiten Ziffer. Diese bezeichnet die Relais-Nummer wie folgt (z.B.):

- 210 Parameter für Relais 1220 Parameter für Relais 2230 Parameter für Relais 3
- 240 Parameter für Relais 4*
- 250 Parameter für Relais 5*

Die dritte Stelle bezeichnet bestimmte Parameter der Relaiseinstellung. Sie sind frei wählbar.

21 0 bis 21 9
22 0 bis 22 9
23 0 bis 23 9
24 0 bis 24 9
25 0 bis 25 9

In Abhängigkeit der Gerätefunktion sind nicht immer alle Relaiseinstellungen verfügbar.

Der erste Parameter des jeweiligen Relais bestimmt die Aufgabenzuweisung (z.B. Alarm, Pumpensteuerung, Steuerung oder sonstige Alarme). Danach gibt man die entsprechende Auswahl ein.

⁼ Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

11.2.1 Relais Typ

		*
Parameter P210.	P220, P230), P240 [°] , P250*

Nr.	Parameter	Auswahl	Beschreibung
210	Тур F = 0	0 = ohne Funktion	Das Relais ist nicht programmiert.
220		1 = Alarm	Das Relais ist als Alarmrelais program-
230			miert, d.h. im Alarmzustand ist das Relais
240*			abgefallen.
250*		2 = Schalter	Das Relais ist als Schalter programmiert.
			Beim Zustand EIN ist es angezogen, bei
			AUS ist es abgefallen.
		3 = Steuerung	Das Relais ist als Steuerungsrelais pro-
			grammiert. Beim Zustand EIN ist es ange-
			zogen, bei AUS ist es abgefallen.
		4 = Option	Das Relais kann für verschiedene Funktio-
		(sonstige Alarme)	nen programmiert werden. Beim Zustand
			EIN ist das Relais abgefallen, bei AUS ist
			es angezogen.

11.2.2 Alarmfunktionen

Parameter P210, P220, P230, P240*, P250* = 1 (Alarm)

Jeweils der zweite Parameter bestimmt die Alarmfunktion für das Relais. Parameter P211, P221, P231, P241*, P251* - Relaisfunktion

Nr.	Parameter	Auswahl	Beschreibung
211	Funktion $F = 0$	0 = AUS	Das Relais ist spannungslos.
221		1 = Füllstand	Der Alarm ist vom Füllstand und der Ver-
231			wendung (P2x2) abhängig. Es müssen
241*			2 Schaltpunkte eingegeben werden
251*			(P2x3/P2x4).
		2 = Tendenz	Der Alarm ist von der Änderungsgeschwin-
			digkeit und der Verwendung (P2x2) abhän-
			gig. Es müssen
			2 Schaltpunkte eingegeben werden
			(P2x3/P2x4)
		3 = Temperatur	Der Alarm ist von der Temperatur und der
			Verwendung (P2x2) abhängig. Es müssen
			2 Schaltpunkte eingegeben werden
			(P2x3/P2x4). Die Bezugstemperatur ist
			abhängig von der Temperaturquelle
			(P852). Sollwerte werden in °C eingege-
			ben.
		4 = Echoverlust	Der Alarm schaltet ein, wenn die Fehlerzeit
			(P809) abgelaufen ist. Es müssen keine
			Schaltpunkte gesetzt werden.
		5 = Uhrfehler	Der Alarm schaltet ein, wenn die interne
			Echtzeituhr ausfällt. Es werden keine weite-
			ren Schaltpunkte benötigt.

* = Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

Echoverlust und Zeitverlust werden entsprechend mit Text am Display angezeigt.

Der jeweils dritte Parameter bestimmt die Alarmart oder Verwendung des Relais.

Parameter P212, P222, P232, P242^{*}, P252^{*} - Alarmart/Verwendung des Relais

Nr.	Parameter	Auswahl	Beschreibung
212	Alarmart	1 = allgemeiner Alarm	Relais zieht an wenn der Einschaltpunkt
222			erreicht wird und fällt ab wenn der Aus-
232			schaltpunkt erreicht wird.
242*		2 = Max. Alarm	Der Alarm ist unabhängig von den Einstel-
252*			lungen in P213 – 253* und 214 – 254 im-
			mer beim höheren Füllstandwert EIN und
			beim niedrigeren Füllstandwert AUS.
		3 = MaxMax. Alarm	Der Alarm ist unabhängig von den Einstel-
			lungen in P213-253* und P214-254* immer
			beim höheren Füllstandwert EIN und beim
			niedrigeren Füllstandwert AUS.
		4 Min. Alarm	Der Alarm ist unabhängig von den Einstel-
			lungen in P213-253* und P214-254* immer
			beim höheren Füllstandwert AUS und beim
			niedrigeren Füllstandwert EIN.
		5 = MinMin. Alarm	Der Alarm ist unabhängig von den Einstel-
			lungen in P213-253* und 214-254* immer
			beim höheren Füllstandwert AUS und beim
			niedrigeren Füllstandwert EIN.
		6 = In Band Alarm	Der Alarm ist innerhalb der Grenzen von
			P213-253* und 214-254* EIN und außer-
			halb AUS geschaltet.
		7 = Außer Band Alarm	Der Alarm ist innerhalb der Grenzen von
			P213-253* und 214-254* AUS und außer-
			halb EIN geschaltet.

Der dritte Parameter hat keine Funktion und wird nicht angezeigt. Parameter P211, P221, P231, P241, P251* = 4 oder 5

Der vierte und fünfte Parameter jedes Relais setzt den Ein- bzw. Ausschaltpunkt. Für den Max. Alarm wird der Einschaltpunkt höher als der Ausschaltpunkt gesetzt. Für den Min. Alarm verfährt man genau andersherum. Siehe entsprechende Alarmfunktionstabelle (P212, 222, 232, 242*, 252*) für weitere Informationen.

P213, P223, P233 P243*, P253* - Relais Schaltpunkt 1 (F= 0)
Bestimmt Ein- oder Ausschaltpunkt für den Alarm entsprechend der gewählten Kennung (P2x0 und P2x1).
P214, P224, P234, P244*, P254* - Relais Schaltpunkt 2 (F= 0)
Bestimmt Ein- oder Ausschaltpunkt für den Alarm entsprechend der gewählten Kennung (P2x0 und P2x1).
Wichtige Information:

Füllstand / Volumen

^{* =} Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

Schaltpunkte werden entsprechend der gewählten Funktion in Werten eingegeben.

Füllstand	Eingabe in Einheiten oder in % der Spanne im Bezug auf den Nullpunkt.
Tendenz	Eingabe in Einheiten pro Minute oder in % der Spanne pro Minute. Ein negativer Wert sollte für einen sinkenden Füll- stand eingegeben werden, ein positiver Wert für steigen- den Füllstand.
Temperatur	Eingabe in °C
	Diese Taste muss gedrückt werden, um Werte in % einzu- geben.

11.2.3 Schaltfunktionen

Parameter P210, P220, P230, P240, P240^{*}, P250^{*} = **2 (Schalter)** Der Parameter 2x1 bestimmt, ob die Steuerung gegenwärtig auf "Ein" oder "Aus" schaltet.

Parameter P211, P221, P231, P241*, P251* - Relaisfunktion Dieser Parameter bestimmt, ob die Relaisfunktion "Ein" oder "Aus" schaltet.

Nr.	Parameter	Auswahl	Beschreibung
211	Schalter	0 = AUS	Keine Funktion
221		1 = EIN	Steuerung basiert auf dem Füllstand im
231			Behälter. Alle Pumpensteuerungen werden
241*			benutzt um einander zu unterstützen (lau-
251*			fen gleichzeitig) und jede Pumpenfunktion
			hat einen eigenen Ein- und Ausschaltpunkt.

Parameter 2x2 ist ohne Funktion, wenn die Schalterfunktion gewählt ist. Parameter 2x3 und 2x4 werden gesetzt, um die Ein-/Ausschaltpunkte der Schaltfunktion zu bestimmen.

Die Relais werden über die Ein- bzw. Ausschaltpunkte gesteuert. Für Min. Alarm (abnehmender Füllstand) muss der Einschaltpunkt über den Ausschaltpunkt gesetzt werden.

Für Max. Alarm (steigender Füllstand) muss der Einschaltpunkt unter den Ausschaltpunkt gesetzt werden.

P213, P223, P233 P243*, P253* - Relais Schaltpunkt 1 Eingabe des Einschaltpunkts. Relaisschaltpunkte werden in Maßeinheiten eingegeben (P104).

P214, P224, P234, P244*, P245* - Relais Schaltpunkt 2 Eingabe des Ausschaltpunkts. Relaisschaltpunkte werden in Maßeinheiten eingegeben (P104). P219, P229, P239, P249*, P259* - Max. Anstiegsgeschwindigkeit

⁼ Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

In diesem Parameter kann die Anstiegsgeschwindigkeit des Füllstands, ungeachtet des oberen Einschaltpunktes P2x3, programmiert werden. Falls die Anstiegsgeschwindigkeit programmiert wird, bleibt das Pumpenfunktionsrelais angezogen, bis der Ausschaltpunkt erreicht ist.

Max. Anstiegsgeschwindigkeit wird in Maßeinheiten (P104) pro Minute eingegeben, entweder positiv (ansteigender Füllstand) oder negativ (fallender Füllstand).

11.2.4 Steuerungsfunktionen

Parameter P210, P220, P230, P240^{*}, P250^{*} = **3 (Steuerfunktion)** Wenn ein Relais als Steuerungsrelais programmiert wurde, bestimmt der zweite, im Menü angezeigte Parameter die Funktion des Relais.

Parameter P211, P221, P231, P241*, P251* - Relaisfunktion Dem Relais werden bestimmten Steuerfunktionen zugeteilt (anders als bei Schalter- und Alarmfunktion). Es funktioniert hauptsächlich in Bezug auf Zeit.

Nr.	Parameter	Auswahl	Beschreibung
211	Steuerung	0 = AUS	Keine Funktion
221		1 = Zeitintervall	Die Steuerungsfunktion arbeitet nach dem
231			Arbeitsstromprinzip, d.h. im Funktion AK-
241*			TIV Zustand ist das Relais angezogen.
251*			

Parameter 2x2 ist ohne Funktion, wenn die Steuerfunktion gewählt ist. Parameter 2x3 und 2x4 werden gesetzt, um die Schaltpunkte zu bestimmen. P213, P223, P233 P243*, P253* - Relais Schaltpunkt 1 Dieser Parameter bestimmt das Zeitintervall. Die Schaltpunkte werden in Minuten angegeben. **F = 0.00 min.** P214, P224, P234, P244, P245 - Relais Schaltpunkt 2

Dieser Parameter bestimmt die Anzugdauer des Relais. F = 0.00 min.

11.2.5 Programmierung von optionalen Funktionen

Parameter P210, P220, P230, P240*, P250* = **4 (Optionen)** Die Optionen arbeiten nach dem Arbeitsstromprinzip.

Parameter P211, P221, P231, P241*, P251* - Relaisfunktion Das Relais zieht zur programmierten Uhrzeit für die eingestellte Dauer an. Es wird nach der Echtzeit gesetzt 0 = AUS (Relais abgefallen) oder 1 = Uhrzeit

Nr.	Parameter	Auswahl	Beschreibung
211	Funktion	0 = AUS	Keine Funktion
221		1 = Uhrzeit	Das Relais zieht jeden Tag zur program-
231			mierten Uhrzeit für die eingestellte Dauer
241*			an (Schaltpunkt 1 und 2).
251*			

Das Relais wird dazu verwendet, zu einer bestimmten Zeit am Tag das Gerät zu steuern. Es muss sichergestellt sein, dass die korrekte Zeit programmiert

= Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

wurde. Falls notwendig, muss die Sommerzeit aktiviert werden, um die Zeitverschiebung anzupassen (P970 – P979).

Parameter 2x2 ist ohne Funktion, wenn die optionale Funktion gewählt ist. Parameter 2x3 und 2x4 werden gesetzt, um die Schaltpunkte zu bestimmen.

P213, P223, P233 P243*, P253* - Relais Schaltpunkt 1 Die Relaisschaltpunkte werden in Stunden & Minuten eingegeben (HH:MM) um die Schaltzeit des Relais zu setzen.

P214, P224, P234, P244*, P254* - Relais Schaltpunkt 2 Eingabe der Anzugsdauer des Relais - gehe weiter zu Parameter P2x6.

Parameter P216, P226, P236, P246*, P256* - Relais Zuordnung Eingabe welchem Messkanal die Relais zugeordnet sind. **1= Sensor 1** (oder optional auf den Hilfs- (Strom-) Eingang.)

Nr.	Parameter	Auswahl	Beschreibung
216	Zuordnung	1 = Sensor 1	Relais reagiert auf Sensor 1 berechnete
226			Füllstände.
236		2 = Sensor 2 [*]	Relais reagiert auf Sensor 2 berechnete
246*			Füllstände
256*		3 = mA Eingang	Relais reagiert auf optionalen Stromein-
		(optional)*	gang Füllstände
		4 = Mittelwert von *	Relais bearbeitet den errechneten Durch-
		1 & 2	schnittsfüllstand der beiden Sensoren.

Parameter P217, P227, P237, P247*, P257* - Relaisschaltspiele Der NivuMaster speichert, wie oft jedes Relais abfällt. Es wird die Anzahl der Relaisschaltspiele angezeigt.

Es kann auf jeden beliebigen Wert gesetzt werden.

Parameter P218, P228, P238, P248*, P258* - Fehlermode Der NivuMaster verfügt über einen allgemeinen Fehlerspeicher (P808). Jedoch kann dieser überschrieben werden, so dass jedes einzelne Relais seinen eigenen unabhängigen Fehlerspeicher-Modus hat.

Nr.	Parameter	Auswahl	Beschreibung
218	Fehlermode	0 = Werkseinstellung	Das Relais übernimmt die Einstellung in
228			P808
238		1 = Halten	Das Relais übernimmt den zuletzt gemes-
248*			senen Wert
258*		2 = Abfallen	Das Relais fällt ab
		3 = Anziehen	Das Relais zieht an

Parameter P809 - Fehler-Zeit

Hier wird die Dauer in Minuten eingetragen, die ein Fehler permanent anstehen muss, bevor der Fehlermode aktiv wird.

^{*} = Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

11.3 Infodaten

11.3.1 Temperatur

Die folgenden Parameter geben Auskunft über die Temperatur in °C, wie in P852 "Temperaturquelle" gezeigt. Diese Parameter können nur angezeigt, aber nicht verändert werden. Wenn jedoch P852 geändert wird, werden die Werte zurückgesetzt.

Nr.	Parameter	Beschreibung
580	Min. Wert Temperatur	Anzeige der gemessenen Min. Temperatur
581	Datum von P580	Anzeige des Datums, wann die Min. Tem-
		peratur gemessen wurde.
582	Uhrzeit von P580	Anzeige der Uhrzeit, wann die Min. Tempe-
		ratur gemessen wurde.
583	Max. Wert Temperatur	Anzeige der gemessenen Max. Temperatur
584	Datum von P580	Anzeige des Datums, wann die Max. Tem-
		peratur gemessen wurde.
585	Uhrzeit von P580	Anzeige der Uhrzeit, wann die Max. Tem-
		peratur gemessen wurde.
586	Temperatur aktuell	Anzeige der aktuell gemessenen Tempera-
		tur

11.4 Volumenberechnung

Der NivuMaster bietet eine Vielfalt von Volumenberechnungsmöglichkeiten mit 11 vordefinierten Behälterformen (siehe P600). Für jeden Behälter müssen die Maße in der Maßeinheit (P104) bekannt sein (P601-P603). Diese sind notwendig, um das Volumen (P604) zu berechnen. Es wird in der entsprechenden Volumeneinheit (P605) am Display ausgegeben.

Behälterform	P600 Wert	Maße
	P600 = 0 zylindrisch, flacher Boden	Behälterdurchmesser
	P600 = 1 rechteckig, flacher Boden	Breite und Tiefe

Behälterform	P600 Wert	Маßе
	P600 = 2 zylindrisch, konischer Boden (Auslauf)	Behälterdurchmesser und Höhe des Auslaufs
	P600 = 3 rechteckig Auslauf pyramidenförmig	Breite und Tiefe des rechteckigen Behälters (Tank) sowie Höhe des Bodens
	P600 = 4 zylindrisch mit abgerundetem Boden	Behälterdurchmesser und Höhe des Bodens
	P600 = 5 zylindrisch Bodenform Halbkugel	Behälterdurchmesser
	P600 = 6 zylindrisch abgeschrägter Boden	Behälterdurchmesser und Höhe des Bodens
	P600 = 7 rechteckig Flach abgeschrägter Boden	Breite und Tiefe des rechteckigen Behälters (Tank) sowie Höhe des Bodens
	P600 = 8 liegender Tank flache Enden	Durchmesser und Länge des Tanks
	P600 = 9 liegender Tank abgerundete Enden	Durchmesser, Länge des Tanks und Länge einer der Endteile

Behälterform	P600 Wert	Маßе
	P600 = 10 Kugel	Durchmesser der Kugel
	P600 = 11 universal linear	Folgende Parameter müssen ein- gegeben werden: max. 32 Stützpunkte ab P610 bis P673
	P600 = 12 universal ge- krümmt	Folgende Parameter müssen ein- gegeben werden: max. 32 Stützpunkte ab P610 bis P673

P601 - P603 werden für die Eingabe der Behältermaße verwendet um das Volumen zu berechnen. Die Maße werden benötigt, wie in der nachfolgenden Tabelle gezeigt und in den Parameter Maßeinheiten (P104) eingegeben.

Behälterform	P601	P602	P603
P600 = 0 zylindrisch, flacher Boden	Behälter- durchmesser		
P600 = 1 rechteckig, flacher Boden		Breite des Behäl- ters	Tiefe des Be- hälters
P600 = 2 zylindrisch, konischer Boden (Auslauf)	Höhe des Bodens	Behälter- durchmesser	
P600 = 3 rechteckig Auslauf pyramidenförmig	Höhe des Bodens	Breite des Behäl- ters	Tiefe des Be- hälters
P600 = 4 Zylindrisch mit abgerundetem Boden	Höhe des Bodens	Behälter- durchmesser	
P600 = 5 zylindrisch, abgeschräg- ter Boden	Behälter- durchmesser		
P600 = 6 zylindrisch, abgeschräg- ter Boden	Höhe des Bodens	Behälter- durchmesser	
P600 = 7 rechteckig, flach abgeschrägter Boden	Höhe des Bodens	Breite des Behäl- ters	Tiefe des Be- hälters
P600 = 8 liegender Tank, flache Enden	Länge des Behälters	Behälter- durchmesser	
P600 = 9 liegender Tank, abgerundete Enden	Länge des Behälters	Behälter- durchmesser	Länge eines der Endteile
P600 = 10 Kugel	Durchmesser der Kugel		

Nr.	Parameter	Auswahl	Beschreibung
604	Berechneter Inhalt	Dieser Wert kann nur	Anzeige des berechneten Behälterinhalts
		abgelesen, jedoch	aufgrund der vorgegebenen Maße.
		nicht verändert wer-	
		den.	
605	Einheit Volumen	0 = Ohne Inhalt	Dieser Parameter bestimmt die Einheit, die
		1 = Tonnen	für die Volumenberechnung angezeigt wer-
		2 = LongTons	den soll. Sie wird verwendet in Verbindung
		3 = Kubikmeter	mit P607 (max. Volumen). Die Einheiten
		4 = Liter	werden am Display angezeigt (unterliegt
		5 = Brit. Gallonen	P801).
		6 = US-Gallonen	
		7 = Cubic ft	
		8 = Barrels	

Korrekturfaktor P606

Dieser Parameter wird zur Eingabe eines Korrekturfaktors genutzt. Mit dem Korrekturfaktor können Unterschiede zwischen dem berechneten Behälterinhalt und Max. Volumen, z.B. Materialdichte, berücksichtigt werden.

Max. Volumen P607

Dieser Parameter zeigt den maximalen Behälterinhalt unter Berücksichtigung des Korrekturfaktors an.

Z.B. P604 berechneter Inhalt x P606 Korrekturfaktor, dieser Parameter kann nur gelesen werden, Änderungen sind nicht möglich.

11.4.1 Stützpunkte

Parameter P610 - P673 Füllstand/Volumen Stützpunkte Diese Parameter werden verwendet um ein Profil des Behälters zu erzeugen, wenn Universalbehälterformen gewählt werden (P600 = 11 oder P600 = 12). Die Stützpunkte müssen als Wertepaare eingegeben werden.

Mindestens 2 (P610 und P611), jedoch maximal 32 Wertepaare (P672 und P673) sollen eingegeben werden.

Je mehr Wertepaare, desto genauer wird das Profil.

Universal linear (P600 = 11)

Diese Volumenberechnung erzeugt eine lineare Annäherung der Füllstand-/ Volumenberechnung und funktioniert am besten, wenn der Behälter scharfe Abkantungen zwischen jeder Formänderung hat.

Für jede Stelle, an welcher der Behälter die Form ändert, muss ein Stützpunkt eingegeben werden. Befindet sich ein leicht gebogener Abschnitt in dem Behälter, setzt man in kurzen Abständen mehrere Stützpunkte, um die Krümmung zu berechnen.

Je mehr Wertepaare, desto genauer wird das Profil.

Universal gekrümmt (P600 = 12)

Diese Volumenberechnung erzeugt eine gekrümmte Annäherung der Füllstand-/ Volumenbeziehung und funktioniert am besten, wenn der Behälter keine gerade Form oder Abkantungen hat.

Es müssen jeweils 2 Stützpunkte am Nullpunkt und Max. Füllstand gesetzt werden. Für jede Stelle, an welcher der Behälter einen Bogen macht, benötigt man weitere Stützpunkte.

Mindestens 2 (P610 und P611), jedoch maximal 32 Wertepaare (P672 und P673) sollen eingegeben werden.

Je mehr Wertepaare, desto genauer wird das Profil.

11.4.2 Liste der Stützpunkte

Rücksetzen der Stützpunkte (P696)

Mit diesem Parameter können alle Stützpunkte auf Werkseingabe zurückgesetzt werden, ohne auf diese individuell zugreifen zu müssen. **0=Nein**; 1=Ja

Anzahl der gesetzten Stützpunkte (P697)

Dieser Parameter erlaubt, die Anzahl der gesetzten Stützpunkte zu überprüfen, ohne auf jeden zuzugreifen. Diese ist ein Ausleseparameter, Werte können nicht geändert werden.

11.5 Anzeigeparameter

11.5.1 Eingaben

Nr.	Parameter	Auswahl	Beschreibung
800	Anzeige Einheiten	1 = Absolut (Einheit in	Dieser Parameter bestimmt, ob die Anzeige
		P104)	in Maßeinheiten (P104) oder in Prozent
		2 = in Prozent	ausgegeben wird.
801	Kommastellen	0 = Minimum	keine Kommastellen
		2 = Werkseinstellung	2 Kommastellen
		3 = Maximum	3 Kommastellen
802	Offset Anzeige	F = 0	Eingabe des Wertes, der zum angezeigten
			Wert addiert wird. Relaisschaltpunkte und
			mA-Ausgang werden nicht beeinflusst.
804	Faktor Anzeige	F = 1	Eingabe des Faktors mit dem der ange-
			zeigte Wert multipliziert wird. Relaisschalt-
			punkte und mA-Ausgang werden nicht be-
			einflusst.

P805 Zuordnungsanzeige*

Dieser Parameter bestimmt, auf welchen Eingang sich die Anzeige bezieht. Er wird automatisch auf die richtige Auswahl gestellt, wenn der Auswahl Mode (P100) und der Sensor (P101) gesetzt ist.

Nr.	Parameter	Auswahl	Beschreibung
805*	Zuordnungsanzeige*	0 = Werkseinstellung	zeigt Werte aus P100 erhält
		1 = mA-Eingang	zeigt Füllstand des mA-Eingangs (Option)
		2 = Sensor 1	zeigt Füllstand von Sensor 1
		3 = Sensor 2	zeigt Füllstand von Sensor 2

11.5.2 Fehlermode (Fail Safe)

Nr.	Parameter	Auswahl	Beschreibung
808	Fehlermode	1 = Halten	Der zuletzt gemessene Wert wird gehalten
		2 = Max	Die Anzeige und der mA-Ausgang gehen
			auf Max. Messspanne.
		3 = Min	Die Anzeige und der mA-Ausgang gehen
			auf Min. Messspanne.
Wenn	ein Fehlerfall auftritt, wer	den standardmäßig das D	isplay, die Relais und der mA-Ausgang auf
ihrem	letzten bekannten Wert g	ehalten.	
809	Fehlerzeit	F= 2 Minuten	Eingabe der Zeitdauer nach Auftreten eines
			Fehlers, bevor die Fehlerfunktion aktiviert
			wird.

Wenn der Zeitnehmer aktiv ist, zeigt das Gerät einen Fehlerfall an, wie in P808 (Display) bestimmt, P218, 228, 238, 248*, 258* (Relais) und P840 (mA-Ausgang).

Wenn dieser Fall eintritt, zeigt das Display "Fail save!". Zeitlich zeigt das Display eine Nachricht mit der Art des Fehlers (z.B. Echo- oder Sensorfehler) Wenn die Messung wieder Daten erhält, werden Display, Relais und der mA-Ausgang wieder hergestellt, und der Zeitnehmer zurückgestellt.

11.5.3 Statusanzeige

Nr.	Parameter	Auswahl	Beschreibung
810	Einheiten	0 = Nein	Einheiten werden nicht angezeigt.
		1 = Ja	Einheiten werden angezeigt.

11.5.4 Alarmmeldung

Dieser Parameter bestimmt, ob Meldungen im Run-Modus in der Hilfsanzeige erscheinen, wenn ein Alarmrelais schaltet. Die Meldung lautet z.B.: "Max. Alarm Ein", wobei das Maximum im Parameter "Alarmart" P212, ... 252* bestimmt wird.

Nr.	Parameter	Auswahl	Beschreibung
811	Alarmmeldung	0 = Nein	Alarmmeldungen werden nicht angezeigt.
		1 = JA	Alarmmeldungen werden angezeigt.

^{* =} Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

11.5.5 Pumpenstatus

Dieser Parameter bestimmt, ob Meldungen in der Hilfsanzeige des Displays oder im Run-Modus angezeigt werden, wenn ein Pumpenrelais schaltet. Die Meldung lautet: "Pumpe 1 Ein", wobei die Zahl der Relaisnummer entspricht.

Nr.	Parameter	Auswahl	Beschreibung
812	Allgemein	0 = Nein	Pumpenstatus wird nicht angezeigt.
	(Pumpensteuerung)	1 = JA	Pumpenstatus wird angezeigt.

11.5.6 Steuerungsstatus

Dieser Parameter bestimmt, ob Meldungen im Run-Modus in der Hilfsanzeige erscheinen, wenn ein Alarmrelais schaltet. Die Meldung lautet z.B.: "Zeit Ein"

Nr.	Parameter	Auswahl	Beschreibung
813	Steuermeldung	0 = Nein	Steuerungsstatus wird nicht angezeigt.
		1 = JA	Steuerungsstatus wird angezeigt.

11.5.7 Optionsstatus

Dieser Parameter bestimmt, ob Meldungen im Run-Modus in der Hilfsanzeige erscheinen, wenn ein optionales Relais schaltet. Die Meldung lautet z.B.: "Uhr Ein"

Nr.	Parameter	Auswahl	Beschreibung
814	Optionsstatus	0 = Nein	Optionsstatus wird nicht angezeigt.
		1 = JA	Optionsstatus wird angezeigt.

11.5.8 Hilfsanzeige

Wenn Parameter 100 = 4 (Mittelwert) oder 5 (Differenz) kann die Hilfsanzeige des Displays benutzt werden, und den Füllstand der beiden Sensoren anzuzeigen.

Die Auswahl ist wie folgt:

Nr.	Parameter	Auswahl	Beschreibung
815*	Zusatzeingang	0 = AUS	Hilfsanzeige wird nicht benutzt
		1 = AUX (optional)	Zeigt den Füllstand des Zusatzeingangs
		2 = Sensor 1	Zeigt den Füllstand von Sensor 1
		3 = Sensor 2	Zeigt den Füllstand von Sensor 2

P817* Hilfsoffset für P815*

Der Wert dieses Parameters wird zum Wert in der Hilfsanzeige addiert, bevor er in der Maßeinheit (P104) angezeigt wird.

11.5.9 Balkenanzeige 3-Relais-Gerät

Nr.	Parameter	Auswahl	Beschreibung
829	Balkenanzeige	2 = Sensor 1	Balkenanzeige zeigt den Füllstand an.
		3 = Volumen	Balkenanzeige zeigt das Volumen an.

⁼ Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

11.5.10 Balkenanzeige 5-Relais-Gerät*

Die Auswahl (nur gültig, wenn Sie ein 5-Relais-Gerät haben!), abhängig vom Wert der im Modus P100 eingetragen ist, ist wie folgt:

Nr.	Parameter	Auswahl	Beschreibung
829	Balkenanzeige	1 = mA-Eingang (opti-	Balkenanzeige zeigt den Füllstand vom
	Nur für 5 Relais	onal)	optionalen Eingang AUX
		2 = Sensor 1	Balkenanzeige zeigt den Füllstand von
			Sensor 1
		3 = Sensor 2	Balkenanzeige zeigt den Füllstand von
			Sensor 2
		4 = Differenz	Balkenanzeige zeigt die Differenz des Füll-
			standes von beiden Messstellen
		5 = Volumen	Balkenanzeige zeigt Das Volumen, das in
			Modus P100 ausgewählt wurde
		6 = Volumen (Durch-	Balkenanzeige zeigt das durchschnittliche
		schnitt)	Volumen von beiden Messpunkten, das in
			Modus P100 festgelegt wurde.

Wenn P100 = 4 (Mittelwert) oder 5 (Differenz) kann die Balkenanzeige dazu genutzt werden, darstellend für den Füllstand eines der beiden Messpunkte zu sein.

Dieser Parameter wird automatisch auf die richtige werkseitige Auswahl gesetzt, wenn der Modus (P100) und der Sensor (P101) gewählt ist.

^{*} = Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

11.6 mA-Ausgang

11.6.1 Bereiche (P830)

Dieser Parameter bestimmt den Bereich des mA-Ausgangs, wie folgt:

Nr.	Parameter	Auswahl	Beschreibung
830	mA-Bereich	0 = AUS	mA-Ausgang gesperrt
		1 = 0-20 mA	mA-Ausgang direkt proportional zum
			mA-Modus (P831).
			Wenn der Messwert 0% = Ausgang 0 mA,
			ist der Messwert bei 100 % = Ausgang bei
			20 mA
		2 = 4-20 mA	mA-Ausgang direkt proportional zum
			mA-Modus (P831).
			Wenn der Messwert 0% = Ausgang 4 mA,
			ist der Messwert bei 100 % = Ausgang bei
			20 mA
		3 = 20-0 mA	mA-Ausgang direkt proportional zum
			mA-Modus (P831).
			Wenn der Messwert 0% = Ausgang 20 mA,
			ist der Messwert bei 100 % = Ausgang bei
			0 mA
		4 = 20-4 mA	mA-Ausgang direkt proportional zum
			mA-Modus (P831).
			Wenn der Messwert 0 % = Ausgang 20
			mA, ist der Messwert bei 100 % = Ausgang
			bei
			4 mA

11.6.2 Zuordnung

Dieser Parameter bestimmt, auf welchen Messwert sich der mA-Ausgang bezieht.

Bei Werkseinstellung arbeitet er exakt wie das Display, kann aber auch wie folgt eingestellt werden:

Nr.	Parameter	Auswahl	Beschreibung
831	mA-Ausgangsmodus	0 = Betriebsmodus	mA-Ausgang in Bezug auf Modus P100
		1 = Abstand	mA-Ausgang in Bezug auf Abstand
		2 = Füllstand	mA-Ausgang in Bezug auf Füllstand
		3 = Leerraum	mA-Ausgang in Bezug auf Leerraum
		4 = Mittelwert* Füll-	mA-Ausgang in Bezug auf den Mittelwert
		stand	des Füllstands der beiden Messstellen
			(P100 = 4)
		5 = Volumen	mA-Ausgang in Bezug auf Volumen
			(P100 = 5)
		6 = Volumen [*] (Mittel-	mA-Ausgang in Bezug auf Volumen-
		wert)	Mittelwert der beiden Messstellen
			(P100 = 6)

= Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

11.6.3 Grenzwerte

Bei Betriebsmode zeigt der mA-Ausgang den Nullpunkt (0 oder 4 mA, abhängig vom mA-Bereich (P830)) und 100 % der Betriebspanne (20 mA). Evtl. benötigt man die Ausgabe eines Abschnitts der Betriebsspanne, z.B. hat die Applikation eine Betriebsspanne von 6 Metern, aber der Ausgang soll vom Leerzustand (0 oder 4 mA abhängig vom mA-Bereich (P830)) bis zu einem Füllstand von 5 Metern (20 mA) darstellen. Wenn ja, sollte P834 (Min. Füllstand) auf 0,00 Meter eingestellt werden und P835 (Max. Füllstand) auf 5 Meter.

P834 Minimaler Füllstand

Dieser Parameter setzt den Füllstand, den Abstand oder den Leerraum, abhängig von der angewählten mA-Zuordnung (P831) bei welcher der minimale mA-Ausgangswert angezeigt wird (0 oder 4 mA, abhängig vom mA-Bereich (P830)). Werkseinstellung = 0.000 m

P835 Maximaler Füllstand

Dieser Parameter setzt den Füllstand, den Abstand oder den Leerraum, abhängig von der angewählten mA-Zuordnung (P831) bei welcher der maximale mA-Ausgangswert angezeigt wird (20 mA). Werkseinstellung = 6.000 m

11.6.4 Grenzen

Minimale Begrenzung (P836)

Dieser Parameter setzt den geringsten Füllstand, auf den der mA-Ausgang abfallen kann. Werksseitig ist er auf 0 mA eingestellt. Dies kann aber übergangen werden, wenn das angeschlossene Gerät z.B. nicht weniger als 2 mA verarbeiten kann und dennoch der 0-20 mA Bereich verwendet werden soll.

Maximale Begrenzung (P837)

Dieser Parameter setzt den höchsten Füllstand, auf den der mA-Ausgang ansteigen kann. Werksseitig ist er auf 20 mA eingestellt. Dies kann aber übergangen werden, wenn das angeschlossene Gerät z.B. nicht mehr als 18 mA verarbeiten kann und dennoch der 0-20 mA Bereich verwendet werden soll.

11.6.5 Feinabgleich

Minimaler Abgleich (P838)

Wenn das angeschlossene Gerät nicht kalibriert ist und nicht den korrekten unteren Wert (Messwert) anzeigt, kann es mit diesem Parameter abgeglichen werden. Der Offset kann entweder direkt eingegeben oder mit Hilfe der Pfeiltasten soweit erhöht oder verringert werden, bis der Wert korrekt ist.

Maximaler Abgleich (P839)

Wenn das angeschlossene Gerät nicht kalibriert ist und nicht den korrekten oberen Wert (Messwert) anzeigt, kann es mit diesem Parameter abgeglichen werden. Der Offset kann entweder direkt eingegeben oder mit Hilfe der Pfeiltasten soweit erhöht oder verringert werden, bis der Wert korrekt ist.

11.6.6 Fehlermode für mA-Ausgang (separat)

mA-Fehlermode (P840)

Dieser Parameter bestimmt, was mit dem mA-Ausgang passiert, wenn er in den Fehlermode geht. Die Vorgabe ist, wie beim System-Fehlermode (P808). Dieser Parameter kann so verändert werden, dass der mA-Ausgang gezwungen wird nach einem vorgegebenen Fehlermode zu arbeiten.

Nr.	Parameter	Auswahl	Beschreibung
840	Fehlermode	0 = Betriebsmodus	mA-Ausgang schaltet wie in P808
		1 = Halten	mA-Ausgang bewahrt seinen letzten be- kannten Wert.
		2 = Min.	mA-Ausgang fällt auf den MinWert
		3 = Max.	mA-Ausgang steigt auf den MaxWert

11.6.7 Messkanal

mA-Zuordnung (P841)

Standardmäßig ist der mA-Ausgang darstellend für den Messwert erhältlich, wie in P100 bestimmt.

Wenn P100 = 4 (Mittelwert)^{*} oder 5 (Differenz)^{*} kann die Balkenanzeige dazu genutzt werden, darstellend für den Füllstand einer der beiden Messpunkte zu sein. Dieser Parameter wird automatisch auf die richtige werkseitige Auswahl gesetzt, wenn der Modus P100 und der Sensor (P101) gewählt sind. Unter normalen Umständen ist eine Änderung nicht erforderlich.

Nr.	Parameter	Auswahl	Beschreibung
841	mA-Zuordnung	1 = mA-Eingang* (op-	mA-Ausgang bezieht sich optional auf den
		tional)	Hilfs-Eingang Füllstand
		2 = Sensor 1	mA-Ausgang bezieht sich auf Sensor 1
			Füllstand
		3 = Sensor 2*	mA-Ausgang bezieht sich auf Sensor 2
			Füllstand
		4 = Differenz*	mA-Ausgang bezieht sich auf die Differenz
			der beiden Messstellen (P100 = 4)
		5 = Volumen	mA-Ausgang bezieht sich auf das Volumen
			(P100 = 5)
		6 = Volumen* (Durch-	mA-Ausgang bezieht sich auf durchschnitt-
		schnitt)	liche Volumen der beiden Messstellen
			(P100 = 6)

11.7 Kompensation

Stabilität, Echoverarbeitung, System, Schnittstelle, Test/Simulation - siehe Kapitel 13.17 und folgende.

⁼ Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

11.8 Beispiele

11.8.1 Füllstandmessung mit Volumenberechnung

P602 = 2,00

P604 =

P605 = 1

P606 = 1

P607 =

Rundsilo mit Konus

Anwen	dung		
	Betrieb	sparameter	
		P100 = 5	Volumen
		P101 = 2	Sensor Typ P-06
		P102 = 1	Flüssigkeit
	Abm	essungen	
		P104 = 1	Maßeinheit m
		P105 = 3,00	Abstand Sensor zum Nullpunkt des Silos 3m
		D106 0.50	Maximaler Füllstand
		P100 = 2,50	(entspricht meist Füllstand bei max. Volumen)
		P107 = 30	Nahausblendung 30cm
		P108 = 20%	Endbereichserweiterung 20%
			-
Volumenbe	rechnung		
	Umr	echnung	
		P600 = 2	Behältertyp 2 - Rundsilo mit Konus
		P601 = 1,00	Konushöhe 1m

Silodurchmesser 2m

P607 = P604 x P606

Einheit Volumen z.B. 1=Tonnen

Anzeige des maximalen Volumens

Eingabemöglichkeit eines Korrekturfaktor

Anzeige des vom NivuMaster berechneten Behälterinhaltes

Liegender Tank mit runden Enden

Anwendung		_
Betrieb	sparameter	
	P100 = 5	Volumen
	P101 = 2	Sensor Typ P-06
	P102 = 1	Flüssigkeit
Abm	essungen	
	P104 = 1	Maßeinheit m
	P105 = 3,00	Abstand Sensor zum Nullpunkt des Silos 3m
	D106 2.50	Maximaler Füllstand
	P106 = 2,50	(entspricht meist Füllstand bei max. Volumen)
	P107 = 30	Nahausblendung 30cm
	P108 = 20%	Endbereichserweiterung 20%

Volumenberechnung

Umrechnung		
	P600 = 9	Behältertyp 9 Liegender Tank mit runden Enden
	P601 = 5,00	Länge Tank 5m
	P602 = 2,00	Tankdurchmesser 2m
	P603 = 0,5	Tankenden 0,5m
	P604 =	Anzeige des vom NivuMaster berechneten Behälterinhaltes
	P605 = 4	Einheit Volumen z.B. 4 = Liter
	P606 = 1	Eingabemöglichkeit eines Korrekturfaktor
		Anzeige des maximalen Volumens
	P607 =	P607 = P604 x P606

Freie Behälterform über Stützpunkte

Anwendung	1	
Betriel	sparameter	
	P100 = 5	Volumen
	P101 = 2	Sensor Typ P-06
	P102 = 1	Flüssigkeit
Abm	essungen	
	P104 = 1	Maßeinheit m
	P105 = 3,00	Abstand Sensor zum Nullpunkt des Silos 3m
	$P_{106} = 2.50$	Maximaler Füllstand
	P106 = 2,50	(entspricht meist Füllstand bei max. Volumen)
	P107 = 30	Nahausblendung 30cm
	P108 = 20%	Endbereichserweiterung 20%

Volumenberechnung		
	Umrechnu	

rechnung	
P600 = 11	Berechnung über Stützpunkte für linearen Verlauf
P605 = 4	Einheit Volumen z.B. 4 = Liter

Einheit Volumen z.B. 4 = Liter

Berechnung über Stützpunkte für gekrümmten Verlauf

Alternativ:

Volumenberechnung

_			
ützpunkte			
	P610 = 0	Füllstand Nr. 1 = 0m	
P611 = 0		Volumen Nr. 1 = 0 Liter	
Stützpunkte ma		ax. 32 Stück, mindestens jedoch zwei.	
	P672 = 2,50	Füllstand Nr. 32 = 2,50m	
	P673 = 5000	Volumen Nr. 32 = 5000 Liter	

11.8.2 Relaisprogrammierung

Alle Relaisschaltpunkte werden als Füllstand, bezogen auf den in P105 eingestellten Nullpunkt, eingegeben. Sie sind unabhängig von dem in P100 eingestellten Betriebsmode für den angezeigten Messwert.

Bitte beachten Sie:

Bei den nachfolgenden Beispielen ist die Relaisfunktion immer dem Sensor 1 zugewiesen (P216=1).

Die Schaltspiele des Relais werden bei der Programmierung nicht berücksichtigt (P217).

Das Fehlerverhalten (FailSafe) wurde immer auf Werkseinstellung belassen (P218).

Relaiszustand	Relais als Alarm pro- grammiert	Relais als Schalter pro- grammiert
Spannungslos		
EIN		
AUS		

11.8.3 Füllstandalarm

Max. Alarm

Relaisprogrammierung		
	Relais Nr. 1	
	P210 = 1	Alarmrelais im Ruhestrombetrieb
	P211 = 1	Füllstandalarm
	P212 = 2*	Max. Alarm
	P213 = 2(m)	Schaltpunkt 1
	P214 = 1,8 (m)	Schaltpunkt 2
* wird on Bolois ole Mey Alerm program		niert ee wird unebhöngig von der Eingebe e

* wird ein Relais als Max. Alarm programmiert, so wird unabhängig von der Eingabe der Schaltpunkte in P213 und P214 der höhere Wert als Einschaltpunkt und der niedrigere Wert als Ausschaltpunkt verwendet.

Relaisprogrammierung		
	Relais Nr. 1	
	P210 = 1	Alarmrelais im Ruhestrombetrieb
	P211 = 1	Füllstandalarm
	P212 = 1*	Allgemeiner Alarm als Max. Alarm
	P213 = 2,0 (m)	Einschaltpunkt
	P214 = 1,8 (m)	Ausschaltpunkt

* wird ein Relais als allgemeiner Alarm programmiert, so ist immer P213 der Einschaltpunkt und P214 der Ausschaltpunkt.

Min. Alarm

Alarmrelais im Ruhestrombetrieb Füllstandalarm Min. Alarm Schaltpunkt 1 Schaltpunkt 2

* wird ein Relais als Min. Alarm programmiert, so wird unabhängig von der Eingabe der Schaltpunkte in P213 und P214 der niedrigere Wert als Einschaltpunkt und der höhere Wert als Ausschaltpunkt verwendet.

Relaisprogrammierung		Í
	Relais Nr. 1	
	P210 = 1	
	P211 = 1	
	P212 = 1*	
	P213 = 0,5 (m)	
	P214 = 0,7 (m)	

Alarmrelais im Ruhestrombetrieb Füllstandalarm Allgemeiner Alarm als Min. Alarm Einschaltpunkt Ausschaltpunkt

* wird ein Relais als allgemeiner Alarm programmiert, so ist immer P213 der Einschaltpunkt und P214 der Ausschaltpunkt.

11.8.4 Schalterfunktion

Relaisprogrammierung		
R	elais Nr. 1	
Р	210 = 2	Schalterfunktion nach dem Arbeitstromprinzip
Р	211 = 1	Einschalter
Р	213 = 2(m)	Einschaltpunkt
Р	214 = 1,8 (m)	Ausschaltpunkt

11.8.5 Tendenzrelais

Tendenz fallend EIN

Alarmrelais im Ruhestrombetrieb Allgemeiner Tendenzalarm

Einschaltwert fallend Ausschaltwert steigend

Tendenz steigend EIN

Rela	Relaisprogrammierung	
	Relais Nr. 1	
	P210 = 1	
	P211 = 2	
	P212 = 1	
	P213 = 0,01 (m/min)	
	P214 = - 0,01 (m/min)	

Alarmrelais im Ruhestrombetrieb Allgemeiner Tendenzalarm

Einschaltwert steigend Ausschaltwert fallend

11.8.6 Störmelderelais

Relaisprogrammierung		
	Relais Nr. 1	
	P210 = 1	
	P211 = 4	
	P809 = 2	

Alarmrelais im Ruhebetrieb Alarm bei Echoverlust

Zeitdauer vom Erkennen des Fehler bis das Relais schaltet.

11.8.7 Tendenzmessung

Bevor mit der Einstellung des Tendenzrelais begonnen werden kann, sollten die Einstellungen für die Erneuerung des Tendenzwertes (Update) überprüft werden. Die Berechnung des Tendenzwertes erfolgt wahlweise nach jedem Messzyklus (P874 = 0 kontinuierlich) oder nach den Vorgaben in P875 und P876 (P874=1).

Die Tendenz ist das Verhältnis einer Höhenstandänderung Δh nach Ablauf einer Zeitdauer Δt .

Die Berechnung eines neuen Tendenzwertes kann auf zwei Arten erfolgen, wobei entweder die Höhenstandsänderung (P876) oder die Zeitdauer (P875) vorgegeben sind.

1. Berechnung eines Tendenzwertes nach Ablauf der Zeit Δt = P875.

2. Erneuerung des Tendenzwertes nach Füllstandsänderung ∆h. Eingabe in Parameter P876.

12 Pumpensteuerung

12.1 Start des Programmiermode

Zuerst muss vom RUN-Mode in den Programmiermode gewechselt werden. Dazu ist der Zugangscode einzugeben.

Zugangscode eingeben und bestätigen.

12.1.1 Schnellstart (siehe Kapitel 10.1.1)

12.1.2 Auswahl des Schnellstarts

Das Display zeigt "Vorwahlmenü" in der ersten Zeile.

Durch Drücken der rechten Pfeiltaste wechselt der NivuMaster ins Schnellstartmenü. Mit der E-Taste gelangt man in die Schnellstartprogrammierung (Applikationsmenü). Am Display erscheint eine Anzahl von Auswahlmöglichkeiten (siehe Kapitel 12.1.3).

Wurde bereits eine Applikation eingerichtet, erscheint am Display eine Meldung über die aktuelle Einrichtung. Soll dieses zurückgesetzt und neu gestartet werden, drückt man die Taste >0< (setzt alle Schnellstartparameter zurück). Andernfalls werden durch Drücken der ENTER-Taste die gesetzten Parameter übernommen.

12.1.3 Auswahl der Applikation

Es gibt 4 Applikationsvarianten, welche alle später in diesem Kapitel erklärt werden. Diese sind

- Füllstand
- leerpumpen (Pumpensumpf Steuerung)
- vollpumpen (Steuerung Vorratstank)
- Differenzmessung
- alle mit Möglichkeit der Alarmfunktion

Wenn eine Standard-Füllstandmessung als Applikation gewünscht wird, muss eine 1 ausgewählt werden (siehe Abb. 12-2).

Wenn eine Applikation zum leerpumpen gewünscht wird, muss eine 2 ausgewählt werden (siehe Abb. 12-3).

Wenn eine Applikation zum vollpumpen gewünscht wird, muss eine 3 ausgewählt werden (siehe Abb. 12-4).

Wenn eine Applikation zur Differenzmessung gewünscht wird, muss eine 4 ausgewählt werden (siehe Abb. 12-5).

Sobald die Applikation gewählt wurde, wird am Display eine Reihe von Fragen aufgezeigt, welche durch Wählen der entsprechenden Möglichkeit beantwortet werden. Dies ist im nachfolgenden Diagramm erklärend dargestellt.

Sobald alle Fragen beantwortet sind, erscheint am Display die Aufforderung nach weiteren Informationen (siehe Abb. 12-1), um die Programmierung des Gerätes abzuschließen.

Abb. 12-1 Schnellstart-Menü

12.1.4 Betriebsparameter

Nr.	Parameter	Auswahl	Beschreibung
101	Sensor	0= mA-Eing.* ²	Eingabe des verwendeten Sensors
		1= P-03	
		2= P-06 6= P-40	
		3= P-10 7= P-S6	
		4= P-15	
104	Maßeinheiten	1= Meter	Eingabe der Maßeinheit, die für die Pro-
		2= cm	grammierung der Messinformationen ver-
		3= mm	wendet werden.
		4= feet	
		5= inches	
105	Nullpunkt	F= 6 m	Eingabe des Abstandes vom Sensor zum
			Nullpunkt der Messung.
106	Spanne	F= 5.7 m	Eingabe der Messspanne vom Nullpunkt
			(P105) zum maximalen Messwert.

Für weitere Auswahlmöglichkeiten, drücken Sie bitte die Enter-Taste

Nr.	Parameter	Auswahl	Beschreibung
213/	Relais 1 EIN/AUS	Voreingestellt auf %,	Entweder Alarm oder Pumpensteuerung,
214	Schaltpunkte	entsprechend zur be-	abhängig von der Applikation.
		reits eingegebenen	(wenn P212 = 1 dann Einschaltpunkt)
		Spanne.	
223 /	Relais 2 EIN/AUS	Voreingestellt auf %,	Entweder Alarm oder Pumpensteuerung,
224	Schaltpunkte	entsprechend zur be-	abhängig von der Applikation
		reits eingegebenen	
		Spanne.	

Diese Werte gelten auch für P233/234 (Relais 3), P243/244^{*} (Relais 4) und P253/354^{*} (Relais 5)

Nr.	Parameter	Auswahl	Beschreibung
P830	mA-Ausgangs-	0 = Aus,	Bestimmt den mA-Ausgangsbereich
	Bereich	1 = 0-20 mA,	
		2 = 4-20 mA,	
		3 = 20-0 mA,	
		4 = 20-4 mA	
P870	Dämpfung steigend	F=10 m/min	Eingabe der Dämpfung des steigenden
			Füllstandes in Einheit/Min.
P871	Dämpfung fallend	F=10 m/min	Eingabe der Dämpfung des fallenden Füll-
			standes in Einheit/Min.

Die voreingestellten Werte die zur Bestimmung der Relaisschaltpunkte verwendet werden, bei Einstellung Alarm; Differenz; Steuern und Pumpenrelais über das Schnellstartmenü werden in % der in P106 eingetragenen Messspanne in P2x3/P2x4 Relaisschaltpunkte voreingestellt

² Nur bei opt. mA-Eingang

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

Applikation	Anzahl der	Pumpen-	Schaltpunkt	Schaltpunkt
	Pumpen	Nummer	Ein	Aus
leerpumpen	1	Pumpe 1	50 %	20 %
leerpumpen	2	Pumpe 1	50 %	20 %
		Pumpe 2	70 %	20 %
leerpumpen	3	Pumpe 1	50 %	20 %
		Pumpe 2	60 %	20 %
		Pumpe 3	70%	20 %
leerpumpen	4	Pumpe 1	40 %	20 %
		Pumpe 2	50 %	20 %
		Pumpe 3	60 %	20 %
		Pumpe 4	70%	20 %
leerpumpen	5*	Pumpe 1	40 %	20 %
		Pumpe 2	50 %	20 %
		Pumpe 3	60 %	20 %
		Pumpe 4	70%	20 %
		Pumpe 5	75 %	20 %

Applikation	Anzahl der	Pumpen-	Schaltpunkt	Schaltpunkt
	Pumpen	Nummer	Ein	Aus
vollpumpen	1	Pumpe 1	50 %	80 %
vollpumpen	2	Pumpe 1	50 %	80 %
		Pumpe 2	30 %	80 %
vollpumpen	3	Pumpe 1	50 %	80 %
		Pumpe 2	40 %	80 %
		Pumpe 3	30%	80 %
vollpumpen	4*	Pumpe 1	60 %	80 %
		Pumpe 2	50 %	80 %
		Pumpe 3	40 %	80 %
		Pumpe 4	30%	80 %
vollpumpen	5*	Pumpe 1	60 %	80 %
		Pumpe 2	50 %	80 %
		Pumpe 3	40 %	80 %
		Pumpe 4	30%	80 %
		Pumpe 5	25 %	80 %

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

Die nachfolgenden Applikationen sind nur bei der 5-Relais-Version verfügbar:

Applikation	Anzahl der Steu-	Relais-	Schaltpunkt	Schaltpunkt
	er-Relais	Nummer	Ein	Aus
Füllstand Max.	1	Steuerung 1	80 %	20 %
Steuerrelais				
Füllstand Max.	2	Steuerung 1	80 %	20 %
Steuerrelais		Steuerung 2	70 %	20 %
Füllstand Max.	3	Steuerung 1	80 %	20 %
Steuerrelais		Steuerung 2	70 %	20 %
		Steuerung 3	60 %	20 %
Füllstand Max.	4	Steuerung 1	80 %	20 %
Steuerrelais		Steuerung 2	70 %	20 %
		Steuerung 3	60 %	20 %
		Steuerung 4	50 %	20 %
Füllstand Max.	5	Steuerung 1	80 %	20 %
Steuerrelais		Steuerung 2	70 %	20 %
		Steuerung 3	60 %	20 %
		Steuerung 4	50 %	20 %
		Steuerung 5	40 %	20 %

Applikation	Anzahl der Steu-	Relais-	Schaltpunkt	Schaltpunkt
	er-Relais	Nummer	Ein	Aus
Füllstand Min.	1	Steuerung 1	20 %	80 %
Steuerrelais				
Füllstand Min.	2	Steuerung 1	20 %	80 %
Steuerrelais		Steuerung 2	30 %	80 %
Füllstand Min.	3	Steuerung 1	20 %	80 %
Steuerrelais		Steuerung 2	30 %	80 %
		Steuerung 3	40 %	80 %
Füllstand Min.	4	Steuerung 1	20 %	80 %
Steuerrelais		Steuerung 2	30 %	80 %
		Steuerung 3	40 %	80 %
		Steuerung 4	50 %	80 %
Füllstand Min.	5	Steuerung 1	20 %	80 %
Steuerrelais		Steuerung 2	30 %	80 %
		Steuerung 3	40 %	80 %
		Steuerung 4	50 %	80 %
		Steuerung 5	60 %	80 %

Applikation	Anzahl der Steu-	Relais-	Schaltpunkt	Schaltpunkt
	er-Relais	Nummer	Ein	Aus
Differenz Überwa-	1	Steuerung 1	5 %	1 %
chung				
Differenz Überwa-	2	Steuerung 1	5 %	1 %
chung		Steuerung 2	10 %	1 %
Differenz Überwa-	3	Steuerung 1	5 %	1 %
chung		Steuerung 2	10 %	1 %
		Steuerung 3	20 %	1 %
Differenz Überwa-	4	Steuerung 1	5 %	1 %
chung		Steuerung 2	10 %	1 %
		Steuerung 3	20 %	1 %
		Steuerung 4	30 %	1 %
Differenz Überwa-	5	Steuerung 1	5 %	1 %
chung		Steuerung 2	10 %	1 %
		Steuerung 3	20 %	1 %
		Steuerung 4	30 %	1 %
		Steuerung 5	40 %	1 %

Die nachfolgende Tabelle gilt für alle Versionen

Relais-Funktion	Relais Identi-	Schaltpunkt	Schaltpunkt
	fikation	Ein	Aus
Alarm	Max-Max	90 %	85 %
Alarm	Max	85 %	80 %
Alarm	Min	10 %	15 %
Alarm	Min-Min	5 %	10 %

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

12.1.5 Applikationsbeispiele

Beispiel 1: Füllstandüberwachung mit Alarm:

Ein Behälter enthält eine Flüssigkeit, die sich in der Füllhöhe ändert und die überwacht werden soll. Der Max. Alarm soll dabei auf Relais 1 geschaltet werden, der Min. Alarm auf Relais 2.

Abb. 12-2 Füllstandüberwachung mit Alarm

Wenn der Füllstand bis auf 2,38 m steigt, zieht Relais 1 an, bis der Füllstand auf 2,24 absinkt. Wenn der Füllstand bis auf 0,28 m abfällt zieht Relais 2 an, bis der Füllstand wieder auf 0,42 m ansteigt. Das Display zeigt den Füllstand im Tank an. Der mA-Ausgang stellt den Füllstand dar:

- 4 mA = Leerniveau (0 %)
- 20 mA = 2.8 m (100 %).

Um das Gerät nach Beispiel 1 (Füllstandüberwachung mit Alarm) im Schnellstart (siehe Kapitel 10.1.1) zu programmieren, wählt man die gewünschte Anwendung und geht folgendermaßen vor:

Abfrage	Auswahlmöglichkeit
Füllstand /befüllen /entleeren oder	1 = Füllstandapplikation
Differenz [*]	
Steuerung	0 = keine Steuerung
Anzahl der Alarmmeldungen	2 = 2 Alarmmeldungen
Typ Alarm 1	1 = Max. (high)
Alarm Nr. 1	1 = schaltet Relais 1
Typ Alarm 2	2 = Min. (low)
Sensortyp (P101)	2 = P-06
Material (P102)	1 = Flüssigkeit
Maßeinheit (P104)	1 = Meter
Leerniveau (P105)	3.5 (Meter)
Spanne	2.8 (Meter

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

Die Programmierung ist nun vollständig und das Gerät kann in den Run-Mode zurückgesetzt werden. Drücken Sie C-Taste, bis auf dem Display "Betrieb?" steht, danach mit der E-Taste bestätigen.

Wenn die Relais-Schaltpunkte die Anforderungen der Applikation nicht erfüllen, können diese modifiziert werden.

Wenn auf dem Display folgender Text erscheint, drücken Sie die Enter-Taste um neue Werte auf die Schaltpunkte zu übertragen:

"weitere Optionen drücke Enter"

Alternativ kann auf den entsprechenden Relais-Schaltpunkt über das Hauptmenü oder direkt über die Parameternummer zugegriffen und dieser geändert werden.

Beispiel 2: Pumpenüberwachung (leerpumpen)

Ein Sammelbehälter wird normalerweise verwendet, um vorläufig Wasser oder Auslauf zu stauen. Wenn der Füllstand einen bestimmten Punkt erreicht, wird der Sammelbehälter leer gepumpt und die Flüssigkeit wird einem anderen Prozess zugeführt.

Abb. 12-3 Pumpenüberwachung (leerpumpen)

In diesem Beispiel gibt es 2 Pumpen. Diese sind nach Vorgabe abwechselnd/ unterstützend (ALT/Staffel) einzusetzen. Pumpe 1 wird über Relais 1 gesteuert, Pumpe 2 über Relais 2. Der Füllstandalarm ist auf Relais 5^{*} gesetzt.

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

Funktionsbeschreibung:

Während eines normalen Betriebes schaltet Pumpe 1 bei 0,84 m ein und pumpt leer bis auf 0,56 m. Die Schaltpunkte sind versetzt zu Pumpe 2, die dann beim nächsten Mal einschaltet.

Während Spitzenlastzeiten, bei denen Pumpe 1 nicht ausreicht, schaltet Pumpe 1 bei 0,84 m und Pumpe 2 bei 1,4 m ein und pumpt ab bis auf 0,56 m.

Beim nächsten Mal werden die Pumpenschaltpunkte getauscht, so dass Pumpe 2 zuerst startet.

Falls die Pumpenleistung nicht ausreicht und der Füllstand auf 2,38 m ansteigt, zieht das Alarmrelais (Relais 5) an. Es fällt erst bei einem Füllstand von 2,24 m wieder ab. Dies weist auf eine nicht ausreichende Kapazität der Pumpen hin. Das Display zeigt den Füllstand im Sammelbehälter und der mA-Ausgang stellt den Füllstand dar:

- 4 mA = Nullpunkt (0 %)
- 20 mA = 2,8 m (100 %).

Um das Gerät nach Beispiel 2 Pumpenüberwachung (leerpumpen) im Schnellstart (siehe Kapitel 10.1.1) zu programmieren, wählt man die gewünschte Anwendung und geht folgendermaßen vor:

Abfrage	Auswahlmöglichkeit
Füllstand, vollpumpen/leerpumpen	2 = leerpumpen
oder Differenz [*]	
Anzahl der Pumpen	2 = 2 Pumpen
Pumpenfunktion	3 = Alt/Staffel
Pumpe Nr. 1	1 = Setzen auf Relais 1
Pumpe Nr. 2	2 = Setzen auf Relais 2
Anzahl der Alarme	1 = 1 Alarm
Alarmart 1	1 = MaxAlarm (high)
Alarm Nr. 1	5 = setzen auf Relais 5
Sensortyp (P101)	2 = P-06
Material (P102)	1 = Flüssigkeit
Maßeinheit (P104)	1 = Meter
Leerniveau (P105)	3.5 (Meter)
Spanne	2.8 (Meter)

Die Programmierung ist nun vollständig und das Gerät kann in den Run-Mode zurückgesetzt werden. Drücken Sie die C-Taste, bis auf dem Display "Betrieb?" steht, danach mit der E-Taste bestätigen.

Wenn die Relais-Schaltpunkte die Anforderungen der Applikation nicht erfüllen, können diese modifiziert werden.

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

Beispiel 3: Reservoirüberwachung (vollpumpen)

Ein Reservoir wird normalerweise zum vorrübergehenden Speichern von Flüssigkeiten genutzt. Wenn der Füllstand auf einen gewissen Pegel gesunken ist, wird es wieder aufgefüllt (vollpumpen).

Abb. 12-4 Reservoirüberwachung (vollpumpen)

Es sind 2 Pumpen vorhanden. Diese sind nach Vorgabe abwechselnd/ unterstützend (ALT/Staffel) einzusetzen. Pumpe 1 wird über Relais 1 gesteuert, Pumpe 2 über Relais 2. Der Füllstand-Niedrigalarm wird auf Relais 3 gesetzt.

Funktionsbeschreibung:

Während eines normalen Betriebes schaltet Pumpe 1 bei 1,96 m ein und pumpt voll bis 2,24 m. Die Schaltpunkte werden beim nächsten Start Pumpe 2 zugeordnet, die dann beim nächsten Mal zuerst einschaltet.

Während der Spitzenlastzeiten (Pumpe 1 ist nicht ausreichend), schaltet Pumpe 1 bei 1,96 m und Pumpe 2 bei 1,4 m ein. Pumpe 1+2 pumpen dann bis 2,24 m erreicht sind. Beim nächsten Mal werden die Pumpenschaltpunkte getauscht, so dass Pumpe 2 zuerst startet.

Falls die Pumpenleistung nicht ausreicht und der Füllstand auf 0,28 m absinkt, zieht das Alarmrelais (Relais 3) an. Es fällt erst bei einem Füllstand von 0,42 m wieder ab. Dies weist auf eine nicht ausreichende Kapazität der Pumpen hin. Das Display zeigt den Füllstand im Reservoir und der mA-Ausgang stellt den Füllstand dar:

- 4 mA = Nullpunkt (0%)
- 20 mA = 2,8 m (100 %).

Um das Gerät nach Beispiel 3 Reservoirüberwachung (vollpumpen) im Schnellstart (siehe Kapitel 12.1.3) zu programmieren, wählt man die gewünschte Anwendung und geht folgendermaßen vor:

Abfrage	Auswahlmöglichkeit
Füllstand, vollpumpen/leerpumpen	3 = vollpumpen
oder Differenz [*]	
Anzahl der Pumpen	2 = 2 Pumpen
Pumpenfunktion	3 = Alt/Staffel
Pumpe Nr. 1	1 = Setzen auf Relais 1
Pumpe Nr. 2	2 = Setzen auf Relais 2
Anzahl der Alarme	1 = 1 Alarm
Alarmart 1	2 = MinAlarm (low)
Alarm Nr. 1	5 = setzen auf Relais 3
Sensortyp (P101)	2 = P-06
Material (P102)	1 = Flüssigkeit
Maßeinheit (P104)	1 = Meter
Leerniveau (P105)	3.5 (Meter)
Spanne	2.8 (Meter)

Die Programmierung ist nun vollständig und das Gerät kann in den Run-Mode zurückgesetzt werden. Drücken Sie die C-Taste, bis auf dem Display "Betrieb?" steht, danach mit der E-Taste bestätigen.

Wenn die Relais-Schaltpunkte die Anforderungen der Applikation nicht erfüllen, können diese modifiziert werden.

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

Beispiel 4: Differenzmessung^{*} (nur für 5-Relais-Geräte)

Abb. 12-6 Differenzmessung mit in der Höhe unterschiedlich montierter Sensoren

!

Die beiden Sensoren vor und hinter dem Rechen sollten auf gleicher Höhe montiert werden. Hierdurch wird sichergestellt, dass keine Differenz vorhanden ist, wenn der Füllstand auf beiden Seiten gleich ist. Ist dies nicht möglich so kann ein Anzeigeoffset (P802) oder ein Messoffset (P851) programmiert werden.

[•] Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

In diesem Beispiel wird der NivuMaster zur Überwachung einer Rechensteuerung verwendet. Dieser Rechen filtert Feststoffe im Zulauf einer Kläranlage. Der Max.-Alarm bezieht sich auf Sensor 1 (Anströmseite) und der Min.-Alarm auf Sensor 2 (Abflussseite).

Die Differenzmessung zur Steuerung des Relais wird auf Relais 1; Max.-Alarm (Sensor 1 - Anströmseite) auf Relais 2 und Min. Alarm (Sensor 2 - Abflussseite) auf Relais 3 ausgegeben.

Funktionsbeschreibung:

Wenn der Füllstand auf der Anströmseite ansteigt und/oder der Füllstand auf der Abflussseite sinkt und dies zu einer Differenz von 0,14 m (irgendwo innerhalb der aktiven Spanne) führt, übernimmt Relais 1 die Bedienung des Rechens, wenn der Rechen zugesetzt ist.

Hat der Füllstand der Anströmseite abgenommen und die Differenz sinkt auf 0,03 m, schaltet Relais 1 den Rechen ab.

Sollte der Füllstand auf der Anströmseite auf 2,38 m steigen, gibt das Relais 2 einen Max.-Alarm aus. Fällt der Füllstand dann wieder auf 2,24 m, schaltet der Alarm ab.

Ein Füllstand auf der Abflussseite der einen Wert von 0,28 m erreicht, gibt Relais 3 einen Min.-Alarm aus. Steigt der Füllstand wieder auf 0,42 m, so wird der Min.-Alarm zurückgesetzt.

Um das Gerät nach Beispiel 4 Differenzmessung im Schnellstart (siehe Kapitel 10.1.1) zu programmieren, wählt man die gewünschte Anwendung und geht folgendermaßen vor:

Abfrage	Auswahlmöglichkeit
Füllstand, vollpumpen/leerpumpen	4= Differenz
oder Differenz	
Anzahl der Steuer-Relais	1 = 1 Steuerrelais
Steuerung Nr. 1	1 = Setzen auf Relais 1
Steuerung	1 = Steuerung Differenz
Anzahl der Alarme	2 = 2 Alarm
Alarmart 1	1 = MaxAlarm
Alarm Nr. 1	2 = setzen auf Relais 2
Zugewiesener Alarm 1	2 = Sensor 1
Alarmart 2	1 = MinAlarm
Alarm Nr. 2	3 = setzen auf Relais 3
Zugewiesener Alarm 2	3 = Sensor 2
Sensortyp (P101)	2 = P-06
Maßeinheit (P104)	1 = Meter
Leerniveau (P105)	3.5 (Meter)
Spanne	2.8 (Meter)

Die Programmierung ist nun vollständig und das Gerät kann in den Run-Mode zurückgesetzt werden. Drücken Sie die C-Taste, bis auf dem Display "Betrieb?" steht, danach mit der E-Taste bestätigen.

Wenn die Relais-Schaltpunkte die Anforderungen der Applikation nicht erfüllen, können diese modifiziert werden.

Beispiel 5: Differenzmessung^{*} mit Bodendifferenz (nur für 5-Relais-Geräte)

Abb. 12-7 Differenzmessung

Beispiel: R1 Min A

R1 Min Alarm S1	0,10 ein / 0,11 aus
R2 Differenz Alarm	0,25 ein / 0,20 aus
R3 Max Alarm S1	0,40 ein / 0,35 aus
mA Ausgang	Differenzhöhe / 0 - 0,50
Bodendifferenz	0,20

Erforderliche Parameter für obiges Beispiel: P105 = 0,70P106 = 0,50P108 = 78% (1,15) P851 = -0,65P210 = 1 P211 = 1P213 = 0,30 (0,10+ Bodendifferenz) P214 = 0,31 (0,11+ Bodendifferenz) P220 = 1 P221 = 1P223 = 0,25P224 = 0,20P230 = 1 P231 = 1 P233 = 0,60 (0,40 + Bodendifferenz)P234 = 0,55 (0,35+ Bodendifferenz)

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

12.2 Parameterverzeichnis für Pumpensteuerung

Dieser Abschnitt beschreibt alle verfügbaren Parameter und deren Funktionen bei Einstellung des NivuMaster für Pumpensteuerung. Jeder Parameter kann durch Drücken der Taste "n" auf Werkseinstellung zurückgesetzt werden. Die Werkseinstellung der Parameter ist entweder mit "F=" gekennzeichnet oder **fett** hinterlegt.

12.2.1 Menüdarstellungen

Nachfolgend wird eine Reihe von Darstellungen gezeigt, um sich in den verschiedenen Teilen des Menüsystems zurecht zu finden.

Hauptmenü

Applikation

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

Relaisprogrammierung

Pumpenprogrammierung*

Pumpensteuerung

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

Infodaten

Volumenberechnung* (nur bei 5-Relais Geräten)

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

Effizienz*

Anzeige

mA-Ausgang

Kompensation

Stabilität

Echoverarbeitung

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

System

P979 Ende Monat

Schnittstelle

Test/Simulation

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

12.2.2 Betriebsparameter

P100 Betriebsparameter

Dieser Parameter legt den Betriebsmodus (RUN-Modus) fest und kann wie folgt gesetzt werden:

Nr.	Parameter	Auswahl	Beschreibung
100	Betriebsmode	1 = Abstand	Display zeigt den Abstand von der Sen-
			sorsendefläche zur Mediumsoberfläche
		2 = Füllstand	Zeigt, wie voll der Behälter ist
		3 = Leerraum	Zeigt, wie leer der Behälter ist
		4 = Durchschnitt/	Zeigt den durchschnittlichen Füllstand von
		Füllstand	2 Messpunkten
		5 [*] = Volumen	Zeigt die Füllstand-Differenz zwischen 2
		Differenz*	Messpunkten (Sensoren)

P101 Sensor

Dieser Parameter muss auf den Sensor gesetzt werden, der mit dem Gerät verbunden ist und kann wie folgt ausgewählt werden:

Nr.	Parameter	Auswahl	Beschreibung
101	Sensortyp	0 = Zusatz (optional)	Verwendet den optionalen mA-Eingang
		1 = P03	Sensor ist ein P03. Messbereich 0,125–3 m
		2 = P06	Sensor ist ein P06. Messbereich 0,3–6 m
		3 = P10	Sensor ist ein P10. Messbereich 0,3–10m
		4 = P15	Sensor ist ein P15. Messbereich 0,5–15 m
		5 = P25	Sensor ist ein P25. Messbereich 0,6–25 m
		6 = P40	Sensor ist ein P40. Messbereich 1,2–40 m
		7 = PS6	Sensor ist ein PS6. Messbereich 0,2-6 m
		11 = PR-16	Sensor ist ein NMR-16. Messbereich 0,07-
			16 m

P102 Material

In diesem Parameter muss das zu messende Medium eingestellt werden.

Nr.	Parameter	Auswahl	Beschreibung
102	Material	1 = Flüssigkeit	Für Flüssigkeit und ebene Schüttgüter
		2 = Schüttgut	Für Schüttgut, das gehäuft oder schräg
			eingefüllt ist

P103 Eingang 2* (optional)

Dieser 4-20 mA-Eingang ist optional erhältlich und wird für zusätzliche Sensoren (z.B. Drucksonden) verwendet, wenn kein Ultraschall- oder Radarsensor eingesetzt werden kann. Hierzu muss in P101 >0< ausgewählt werden.

Nr.	Parameter	Auswahl	Beschreibung
103*	Eingang 2 (optional)	0 = keiner	Der zweite Sensoreingang wird nicht benö-
			tigt.
		1 = P03	Sensor ist ein P03
		2 = P06	Sensor ist ein P06
		3 = P10	Sensor ist ein P10
		4 = P15	Sensor ist ein P15
		5 = P25	Sensor ist ein P25
		6 = P40	Sensor ist ein P40

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

12.2.3 Abmessungen

P104 Einheiten

Der Parameter setzt die Einheiten, die zum Programmieren verwendet werden sollen.

Nr.	Parameter	Auswahl	Beschreibung
104	Einheiten	1 = m	Alle Maßeinheiten sind Meter
		2 = cm	Alle Maßeinheiten sind Zentimeter
		3 = mm	Alle Maßeinheiten sind Millimeter
		4 = ft	Alle Maßeinheiten sind Fuß
		5 = in.	Alle Maßeinheiten sind Inch

P105 Nullpunkt

In diesen Parameter wird der maximale Abstand von der Sensor-Sendefläche zum Nullpunkt eingegeben. Die Einheit entspricht der Auswahl in P104. Es ist zu beachten, dass dieser Wert ebenso die Messspanne beeinflusst (siehe nachfolgenden Hinweis) und muss deshalb vor der Spanne gesetzt werden.

Wenn der Nullpunkt (P105) verändert wird, können auch die Werte der Messspanne wieder berechnet werden, so dass sie dem leeren Abstand gleichen (P105); abzüglich der Bereichsausblendung (P107) und den Relaisschaltpunkten. So bleiben die Prozentsatzwerte vom Nullpunkt wie sie waren, bevor der Nullpunkt verändert wurde.

Die Frage "Messspanne neu berechnen?" wird angezeigt. Durch Eingabe von "Ja" (1) wird die Messspanne neu berechnet, jede andere Eingabe belässt die Messspanne auf ihrem Ursprungswert. Danach erscheint die Frage "Sollwerte neu berechnen?". Durch Eingabe von "Ja" (1) werden alle Sollwerte als Prozentsatz des neuen Leerabstands neu berechnet. Jede andere Eingabe belässt die Sollwerte auf ihrem Ursprungswert.

P106 Messspanne

Dieser Wert sollte auf den maximalen Abstand vom Nullpunkt (P105) zur maximalen Materialhöhe eingestellt werden. Bei Einstellung des Nullpunkts wird dieser Parameter automatisch auf einen Wert gleich Nullpunkt (P105) abzüglich Nahbereichsausblendung (P107) gesetzt.

P107 Nahbereichsausblendung

Dieser Parameter definiert den nicht messbaren Bereich ab der Sendefläche des Sensors und ist, abhängig vom verwendeten Sensor (P101), auf den jeweiligen Minimalwert voreingestellt. Der Wert sollte nicht niedriger als in der folgenden Tabelle gesetzt werden, kann jedoch problemlos erhöht werden (typischerweise um Verbauungen in Sensornähe auszublenden).

Nr.	Sensor	Nahbereichsausblendung
107	P101 = 1 Sensor P-03	voreingestellte Nahbereichsausblendung = 0,12 m
	P101 = 2 Sensor P-06	voreingestellte Nahbereichsausblendung = 0,3 m
	P101 = 3 Sensor P-10	voreingestellte Nahbereichsausblendung = 0,3 m
	P101 = 4 Sensor P-15	voreingestellte Nahbereichsausblendung = 0,5 m
	P101 = 5 Sensor P-25	voreingestellte Nahbereichsausblendung = 0,6 m
	P101 = 6 Sensor P-40	voreingestellte Nahbereichsausblendung = 1,2 m
	P101 = 7 Sensor P-S6	voreingestellte Nahbereichsausblendung = 0,2 m

P108 Fernbereichsausblendung

Hier wird der Bereich definiert, den das Gerät über den Nullpunkt hinaus zu messen in der Lage ist (Angabe in Prozent vom Nullpunkt (P105)). Die Werkseinstellung beträgt hier Nullpunkt plus 20 %.

Wenn die zu messende Oberfläche den Nullpunkt (P105) überschreiten kann, ist es möglich, die Fernbereichsausblendung auf einen Maximalwert von 100 % vom Nullpunkt einzustellen.

Die Werte in diesem Parameter werden immer in Prozent eingegeben.

12.2.4 mA-Eingang*

Der 4-20 mA (Hilfs-)Eingang ist optional erhältlich (Details bitte bei NIVUS erfragen) und kann dazu benutzt werden um den Sensor zu ersetzen, wenn bei bestimmten Applikationen kein Ultraschall- oder Radarsensor verwendet werden kann.

P119 mA-Status Wenn P101 (Sensor) = 0 (Hilfseingang)

Anzeige des aktuellen Zustandes (Status) des mA-Eingangs:

Option

Beschreibung 0 = mA OK (Werkseinstellung) mA-Signal liegt an, Funktion korrekt 1 = mA Open kein mA-Signal am Eingang 2 = mA Short mA-Eingang meldet Fehlerzustand

P120 mA bei Min. (Werkseinstellung 4 mA)

Eingabe des mA-Wertes, der dem Nullpunkt der verwendeten Füllstandmessung (z.B. einer Drucksonde) entspricht.

P121 mA bei Max. (Werkseinstellung 20 mA) Eingabe des mA-Wertes, der dem Vollpunkt der verwendeten Füllstandmessung (z.B. einer Drucksonde) entspricht.

P122 Füllstand Min.

Eingabe des Absolutwertes, der dem Nullpunkt der verwendeten Füllstandmessung (z.B. einer Drucksonde) entspricht.

P123 Füllstand Max.

Eingabe des Absolutwertes, der dem Vollpunkt der verwendeten Füllstandmessung (z.B. einer Drucksonde) entspricht.

P124 Feinabgleich mA bei Min.

Dieser Parameter erlaubt den Feinabgleich des 5-Relais NivuMaster auf den Min. mA-Eingang des verwendeten Gerätes. Wenn der erwartete Minimalwert des an den mA-Eingang angeschlossenen Gerätes nicht angezeigt wird, kann ein Abgleich mit Hilfe dieses Parameters vorgenommen werden.

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

P125 Feinabgleich mA bei Max.*

Dieser Parameter erlaubt den Feinabgleich des 5-Relais NivuMaster auf den Max. mA-Eingang des verwendeten Gerätes. Wenn der erwartete Maximalwert des an den mA-Eingang angeschlossenen Gerätes nicht angezeigt wird, kann ein Abgleich mit Hilfe dieses Parameters vorgenommen werden.

12.2.5 Relaisparameter

Die Relaisparameter sind für alle Relais gleich, mit der Ausnahme der zweiten Ziffer, welche die Relaisnummer anzeigt Beispiel:

21x für Relais 1 22x für Relais 2 23x für Relais 3 24x* für Relais 4* 25x* für Relais 5*

Die dritte Stelle spezifiziert bestimmte Parameter, die für Relaiseinstellungen benötigt und einzeln ausgewählt werden können:

Relais 1 210 bis 219 Relais 2 220 bis 229 Relais 3 230 bis 239 Relais 4 240* bis 249* Relais 5 250* bis 259*

P210, P220, P230, P240*, P250* Relaistyp

Eingabe des Relaistyps. Mit dieser Vorgabe wird das Arbeitsverhalten (Ruhestrom oder Arbeitsstromprinzip) festgelegt.

Option	Beschreibung
0 = AUS	Unbenutztes bzw. nicht programmiertes Relais,
	LED immer aus
1 = Alarm	Relais als Alarmrelais programmiert, fällt ab bei
	ON und zieht an bei OFF. Dies stellt sicher, dass
	im Fall eines Stromausfalls ein Alarm ausgelöst
	wird.
2 = Pumpe	Relais als Pumpenrelais programmiert, zieht an
	bei ON und fällt ab bei OFF.
3 = Steuerung	Relais als Steuerrelais programmiert, zieht an bei
	ON und fällt ab bei OFF.
4 = Verschiedenes	Relais für Füllstand unabhängige Alarme pro-
	grammiert, zieht an bei ON und fällt bei OFF ab.
5* = Pumpe zeitgesteuert	Relais als Pumpenrelais programmiert, zieht an
	bei Sollwert ON Level und fällt ab bei Sollwert
	OFF Level bzw. nach einer vordefinierten Zeit-
	spanne, je nachdem welcher Fall zuerst eintritt.

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

12.2.6 Alarme

P210, P220, P230, P240*, P250* = 1 (Alarm) Der zweite Parameter des jeweiligen Relais bestimmt die Alarmfunktion.

Dieser Parameter bestimmt auf welche Funktion der Alarm anspricht wie folgt:		
Option	Beschreibung	
0 = OFF	Relais ohne Funktion	
1 = Füllstand	Alarm wird abhängig vom Füllstand im Behälter, vom Alarmtyp (P212, 222, 232, 242*, 252*) und zwei gesetzten Sollwerten (P213, 223, 233, 243*, 253* & P214, 224, 234, 244*, 254*) ausgelöst. Die Sollwerte werden entweder als Einheiten oder als Prozentsatz der Messspanne eingegeben (siehe P105 Nullpunkt).	
2 = Änderungsrate	Alarm wird abhängig von der Änderungsrate des Füllstands im Behälter, vom Alarmtyp (P212, 222, 232, 242*, 252*) und zwei gesetzten Sollwerten ((P213, 223, 233, 243*, 253* & P214, 224, 234, 244*, 254*) ausgelöst. Die Sollwerte werden ent- weder als Einheiten pro Minute oder als Prozent- satz der Messspanne pro Minute eingegeben. Ein negativer Wert wird für die Alarmauslösung bei fal- lendem Füllstand und ein positiver Wert bei stei- gendem Füllstand benötigt.	
3 = Temperatur	Alarm wird abhängig von Temperatur, Alarmtyp (P212, 222, 232, 242*, 252*) und zwei gesetzten Sollwerten (P213, 223, 233, 243*, 253* & P214, 224, 234, 244*, 254*) ausgelöst. Die Bezugstempe- ratur hängt von der gewählten Quelle ab (P852). Sollwerte werden in °C eingegeben.	
4 = Echovenust	ein Alarm wird ausgelost wenn die in P809 (Fen- lerausgabeverzögerung) eingestellte Zeitspanne abgelaufen ist. Hierfür werden keine Sollwerte be- nötigt.	
5 = Uhrfehler	Ein Alarm wird ausgelöst wenn die interne Echt- zeituhr ausfällt. Hierfür werden keine Sollwerte be- nötigt.	
6 [°] = Pumpenauslastung	Wenn Pumpenauslastung aktiviert ist, wird ein Alarm auf Grund der anhand der Relaisidentifikati- on (P212, 222, 232, 242*, 252*) zugeordneten Re- lais und zwei gesetzten Sollwerten (P213, 223, 233, 243*, 253* & P214, 224, 234, 244*, 254*) ausgelöst. Sollwerte werden in % eingegeben.	

Bitte beachten Sie, dass Echoverlust und Uhrfehler auch im Display ("LOST ECHO" bzw. "LOST CLOCK") angezeigt werden.

Pumpensteuerung

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

Der dritte Parameter bestimmt die Alarmart für das einzustellende Relais. P212, P222, P232, P242*, P252* Alarmart P211, P221, 231, P241*, P251* = 1, 2 oder 3

Alarmart	Beschreibung	Schaltpunkte
1 = Allgemein	Relais zieht an wenn der Ein-	EIN: P213 – 2 5 3*
	schaltpunkt erreicht wird und fällt	AUS: P2 1 4 – 2 5 4*
	ab wenn der Ausschaltpunkt er-	
	reicht wird.	
2 = Max. Alarm	Der Alarm ist unabhängig von	P213 – 253* und P214 – 254*
	den Einstellungen in P213 – 253*	
	und 214 – 254 immer beim höhe-	
	ren Füllstandwert EIN und beim	
	niedrigeren Füllstandwert AUS.	
3 = Max. Max. Alarm	Der Alarm ist unabhängig von	P213 – 253* und P214 – 254*
	den Einstellungen in P213-253*	
	und P214-254* immer beim hö-	
	heren Füllstandwert EIN und	
	beim niedrigeren Füllstandwert	
	AUS.	
4 = Min. Alarm	Der Alarm ist unabhängig von	P213 – 253* und P214 – 254*
	den Einstellungen in P213-253*	
	und P214-254* immer beim hö-	
	heren Füllstandwert AUS und	
	beim niedrigeren Füllstandwert	
	EIN.	
5 = Min. Min. Alarm	Der Alarm ist unabhängig von	P213 – 253* und P214 – 254*
	den Einstellungen in P213-253*	
	und 214-254* immer beim höhe-	
	ren Füllstandwert AUS und beim	
	niedrigeren Füllstandwert EIN.	
6 = In Band Alarm	Der Alarm ist innerhalb der	P213 – 253* und P214 – 254*
	Grenzen von P213-253* und	
	214-254* EIN und außerhalb	
	AUS geschaltet.	
7 = Außer Band	Der Alarm ist innerhalb der	P213 – 253 und P214 – 254*
Alarm	Grenzen von P213-253* und	
	214-254* AUS und außerhalb	
	EIN geschaltet.	

P211, P221, P231, P241*, P251* = 4 oder 5

Der dritte Parameter hat keine Funktion und wird daher nicht angezeigt.

P211, P221, P231, P241*, P251* = 6^{*}

Dieser Parameter ordnet den Alarm dem entsprechenden Pumpenrelais zu wie nachfolgend beschrieben.

Option	Beschreibung
0 = OFF	Relais ohne Funktion
1 = Relais 1	Alarm wird Pumpenrelais 1 zugeordnet.
2 = Relais 2	Alarm wird Pumpenrelais 2 zugeordnet.
3 = Relais 3	Alarm wird Pumpenrelais 3 zugeordnet.
4 = Relais 4*	Alarm wird Pumpenrelais 4 zugeordnet.
5 = Relais 5*	Alarm wird Pumpenrelais 5 zugeordnet.
6 = Nicht belegt	
7 = Alle	Alarm ist allen Pumpenrelais zugeordnet

Mit dem vierten und fünften Parameter wird der Ein- bzw. Ausschaltpunkt des Alarms für jedes Relais definiert. Bei "Max. Alarm" wird der Einschaltpunkt höher als der Ausschaltpunkt, bei "Min. Alarm" wird der Einschaltpunkt niedriger als der Ausschaltpunkt gesetzt. Siehe hierzu die entsprechende Tabelle "Alarmart" (P212, 222, 232, 242*, 252*).

P213, P223, P233, P243*, P253* Relaissollwert 1 Bestimmt den Ein- bzw. Ausschaltpunkt für den Alarm entsprechend der gewählten Alarmart.

P214, P224, P234, P244*, P254* Relaissollwert 2

Bestimmt den Ein- bzw. Ausschaltpunkt für den Alarm entsprechend der gewählten Alarmart.

Sollwerte müssen den Wertevorgaben der gewählten Funktion entsprechend eingegeben werden.

Füllstand wird in Einheiten oder als Prozentwert der Messpanne bezogen auf den Leerstand eingegeben.

Die Änderungsrate wird in Einheiten pro Minute oder als Prozentwert der Messpanne pro Minute eingegeben. Für einen Alarm bei steigendem Füllstand geben Sie hier positive Sollwerte an, bei fallendem Füllstand negative Werte. Temperatur wir in °C eingegeben. Die Effizienz wird als Prozentwert eingegeben.

Um Füllstandssollwerte in Prozent einzugeben drücken Sie das Tastensymbol "Becken" um den Wert anzuzeigen und geben dann den neuen Wert in Prozent bezogen auf den Leerstand ein.

Diese Funktion ist nur bei der 5-Relais-Version verfügbar

12.2.7 Pumpen (Füllstand)

P210, P220, P230, P240*, P250* = 2 (Pumpe)

Wird ein Relais für Pumpenfunktionen eingesetzt, bestimmt der zweite Parameter die Pumpenbereitschaft, welche wiederum den Pumpenzyklus definiert.

P211, P221, P231, P241*, P251* Relaisfunktion

Wie unten beschrieben, bestimmt dieser Parameter die Art der Pumpenbereitschaft auf die das Relais ansprechen soll.

Pumpenbereitschaft	Beschreibung
0 = OFF	Relais immer abgefallen
1 = Fix/Staffel	Pumpenstaffel mit fester Zuordnung der Schalt- punkte (fix), beim Erreichen der Schaltpunkte ar- beiten immer alle Pumpen (Staffel).
2 = Fix/Ersatz	Pumpen im Ersatzbetrieb mit fester Zuordnung der Schaltpunkte (fix).
3 = Alt/Staffel	Pumpen mit zyklischer Vertauschung (alternie- rend), bei Erreichen der Schaltpunkte arbeiten immer alle Pumpen (Staffel).
4 = Alt/Ersatz	Pumpen im Ersatzbetrieb mit zyklischer Vertau- schung (alternierend). -> Weitere Pumpen dieser Pumpengruppe müs- sen ihre Schaltpunkte auf "Null" haben. Nur die erste Pumpe besitzt einen Ein- und Ausschalt- punkt.
5 = Ersatz + Staffel	Es sind z.B. 3 Pumpen programmiert. Die Pum- pen arbeiten im Normalfall im Ersatzbetrieb. Es läuft immer nur eine Pumpe. Reicht die Pumpen- leistung einer Pumpe nicht aus, so steigt das Wasser weiter, bis dann der Schaltpunkt der nächsten Pumpe erreicht wird. Ist dies der Fall und das Wasser steigt weiter, dann schaltet nach 10 Sekunden die zweite Pumpe dazu (Staffel). Steigt auch jetzt das Wasser noch weiter, dann schaltet nach weiteren 10 Sekunden auch die drit- te Pumpe zu.
6 = % Std/Staffel	Die Pumpen in Abhängigkeit der prozentualen Betriebsstundenauslastung. Bei Erreichen der Schaltpunkte arbeiten immer alle Pumpen (Staf- fel).
7 = % Std/Ersatz	Die Pumpen im Ersatzbetrieb und in Abhängigkeit der prozentualen Betriebsstundenauslastung, unter Einhaltung der Vorgabe des Laufzeitverhält- nisses in P 2x5.
8 = FOFO/Alt/Staffel	Die Pumpen arbeiten mit Vertauschung (alternie- rend). Es läuft immer nur eine Pumpe (Ersatzbe- trieb). Die erste Pumpe die eingeschaltet wird, wird auch als erstes wieder ausgeschaltet (FOFO = First On / First Off).

9 = SR Standby	Wird für alle benutzten Pumpen ein festes Ver-		
	hältnis hinsichtlich deren Bereitschaft eingestellt,		
	so kann die bereitstehende Pumpe nur dann ent-		
	sprechend starten, wenn als Einsatzpunkt der		
	eingestellte Sollwert der nächsten Pumpe ange-		
	nommen werden kann. Mit dem dritten Sollwert		
	(P215, 225, 235, 245*, 255*) wird das Verhältnis		
	der Pumpenbereitschaft festgelegt.		
10* = 2	Die Pumpen (z.B. 4 Stück) werden in 2 Gruppen		
Gruppen/Alternierend	(je 2 Stück) aufgeteilt. Innerhalb dieser Gruppen		
	arbeiten die Pumpen mit Vertauschung.		

Die Pumpen werden bei den Schaltpunkten "EIN" und "AUS" gestartet bzw. angehalten. Zum Abpumpen (Füllstand senken) setzen Sie "EIN" höher als "AUS"; zum Einpumpen (Füllstand erhöhen) "EIN" niedriger als "AUS".

Der dritte relaisspezifische Parameter bestimmt die Pumpengruppe. Es können bis zu zwei Gruppen bestimmt werden. Die in P211 gewählten Funktionen arbeiten dann nur innerhalb der Gruppe.

P212, P222, P232, P242*, P252* Relais Pumpengruppe In der Werkseinstellung sind alle Gruppen auf 1 gesetzt. Wenn Sie eine weitere Gruppe benötigen, müssen alle Pumpenrelais, die in der zweiten Gruppe betrieben werden sollen auf 2 gestellt werden.

Der vierte und fünfte Parameter bestimmen die "EIN"- bzw. "AUS"-Schaltpunkte der Pumpen. Im Falle von leerpumpen stellen Sie den Einschaltpunkt höher als den Ausschaltpunkt ein, bei vollpumpen genau umgekehrt.

P213, P223, P233, P243*, P253* Relaissollwert 1 Definiert den Einschaltpunkt der Pumpe

P214, P224, P234, P244*, P254* Relaissollwert 2 Definiert den Ausschaltpunkt der Pumpe

Wenn ein Relais für eine Pumpenfunktion verwendet wird und die Pumpenbereitschaft auf %Std. eingestellt ist, legt dieser Parameter das Verhältnis fest mit dem die Pumpe geschaltet wird (siehe Tabelle Pumpenbereitschaft P211, 221, 231, 241*, 251*).

P211, P221, P231, P241*, P251* = 6, 7 oder 9 (%Std)

P215, P225, P235, P245*, P255* Relaissollwert 3 Dieser Parameter definiert den Wert von %Std in Prozent (siehe Tabelle Pumpenbereitschaft P211, 221, 231, 241*, 251*).

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

P219, P229, P239, P249*, P259* Relais Max. Änderungsrate Dieser Parameter erlaubt es, eine Pumpe ungeachtet des in P213, 223, 233, 243* und 253* gesetzten Einschaltpunktes bei einer vordefinierten Änderungsrate zu schalten. Wenn ein allgemeines Steuerungsrelais durch die vordefinierte Änderungsrate einmal geschaltet wurde, bleibt es in angezogenem Zustand bis der Füllstand den Ausschaltpunkt (P214, 224, 234, 244*, 254*) erreicht hat. Die Max. Änderungsrate kann in Einheiten (P104) pro Minute entweder als positiver (steigender Füllstand) oder als negativer (fallender Füllstand) Wert eingegeben werden.

12.2.8 Steuerung

P210, P220, P230, P240^{*}, P250^{*} = 3 (Steuerung)

Wenn ein Relais als Steuerungsrelais programmiert wurde bestimmt der zweite angezeigte Parameter dessen Funktion.

P211, P221, P231, P241*, P251* Relaisfunktion

Diese Funktion erlaubt dem Relais andere spezifische Steuerungsfunktionen (außer Pumpen und Alarme) zuzuweisen. Einige dieser Funktionen sind zeitabhängig.

Dies kann dazu benutzt werden um Geräte laufzeitabhängig zu schalten, wie z.B. Rechensteuerung oder Spülfunktionen.

Option	Beschreibung	
0 = AUS	Relais immer abgefallen	
1 = Zeitintervall	Relais zieht innerhalb des Grundzyklus (P213,	
	2 2 3, 2 3 3, 2 4 3*, 2 5 3*) für die Zeitdauer (P214,	
	2 2 4, 2 3 4, 2 4 4*, 2 5 4*) an.	
2 = Sturm*	Pumpen arbeiten mit fester Zuordnung der	
	Schaltpunkte (fix), es arbeitet immer nur eine	
	Pumpe (Ersatzbetrieb).	
3 = Belüftung*	Relais zieht innerhalb des Grundzyklus (P213,	
	2 2 3, 2 3 3, 2 4 3*, 2 5 3*) für die Zeitdauer (P214,	
	2 2 4, 2 3 4, 2 4 4*, 2 5 4*) an. Jedoch nur, wenn	
	keine Pumpe eingeschaltet hat. Schaltet in-	
	nerhalb des Zyklus die erste Pumpe ein, so	
	beginnt die Funktion erst nachdem die letzte	
	Pumpe wieder ausgeschaltet hat.	
4 = Spülkippe*	Das programmierte Relais zieht für die Zeit-	
	dauer (P215, 225, 235, 245, 255) nach Been-	
	digung der Pumpenzyklen (P213, 223, 233,	
	243, 253) für die nächsten Pumpenzyklen	
	((P2 1 4, 2 2 4, 2 3 4, 2 4 4, 2 5 4) an.	
	Zuweisung der Pumpen erfolgt unter P2x2. Für	
	die Spülfunktion werden 3 Parameter benötigt.	

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

5 = Pulsdauer*	Dieser Parameter wird benutzt um mit Hilfe
	von Stellorganen (z.B. Motorschieber) einen
	Füllstand zwischen zwei vordefinierten Punk-
	ten zu halten. Das Relais zieht am Beginn der
	Pulsdauer an und fällt am Ende der Pulsdauer
	wieder ab. Ein Relais wird benötigt um den
	Anstieg des Füllstands zu steuern (Schieber
	öffnen), ein weiteres ist für das Abfallen
	(Schieber schließen) notwendig. Alarmart
	P212, 222, 232, 242, 252) weist dem Relais
	die Kontrolle über das Öffnen oder Schließen
	des Schiebers zu. Die Relaissteuerung benö-
	tigt drei Schaltpunkte. Der erste (P213, 223,
	233, 243, 253) bestimmt den Füllstand bei
	dem das Relais anziehen soll. Der zweite be-
	stimmt die Haltezeit (P214, 224,). Der 3.
	Schaltpunkt (P215,225,) schließlich legt die
	Zeitvorgabe fest, nach deren Ablauf das Relais
	anzieht.
6 = Strg Differenz*	Das Relais zieht an, wenn eine gewisse Diffe-
	renz erreicht ist und fällt ab, wenn diese Diffe-
	renz unterschritten wird. Es werden 2 Schalt-
	punkte benötigt – diese sind einzutragen in
	P213, 223, 233, 243, 253 (Schaltpunkt "EIN")
	und
	P214, 225, 236, 247, 258 (Schaltpunkt "Aus").
	Diese Funktion wird genutzt z.B. für Rechen-
	steuerung.

*Der dritte Parameter jedes Relais bestimmt Zuordnung oder Relaiszustand falls benötigt.

P212, P222, P232, P242, P252 Relais Alarmart/Pumpengruppe P211, P221, P231, P241, P251 = 1, 2, 3 oder 6* Dieser Parameter hat keine Funktion P211, P221, P231, P241, P251 = 4* Wenn das Relais für Spülkippe / Pumpe gewählt wurde, wird dieser Parameter verwendet um festzustellen, welcher Pumpe die Spülfunktion zugeteilt ist. Geben Sie die Nummer des Relais ein, an das die betreffende Pumpe angeschlossen ist.

P211, P221, P231, P241, P251 = 5*

Wenn für dieses Relais Pulsdauer ausgewählt ist wird mit diesem Parameter entweder der Status 0 = offen (Füllstand anheben) oder 1 = zu (Füllstand senken) zugewiesen.

Parameter Nummer vier, fünf und sechs definieren die Schaltpunkte, "AUS" und "AN" für das Relais und wenn nötig die Startreihenfolge (siehe Tabelle Steuerungsfunktionen P211, 221, 231, 241, 251).

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

P213, P223, P233, P243, P253 Relaissollwert 1*

P211, P221, P231, P241, P251 = 1 (Zeit)

Dieser Parameter legt die Haltezeit, in der das Relais angezogen bleibt, fest. Die Schaltpunkte werden in Minuten eingegeben.

P211, P221, P231, P241, P251 = 2 (Sturmfunktion)*

Der Relaissollwert 1 wird in Einheiten (P104) eingegeben.

P211, P221, P231, P241, P251 = 3 (Belüftung)*

Zur Einstellung der Zykluszeit wird der Relaissollwert 1 in Minuten eingegeben.

P211, P221, P231, P241, P251 = 4 (Spülkippe)* Um das Spülintervall einzustellen geben Sie hier Sollwert 1 in Pumpenzyklen ein.

P211, P221, P231, P241, P251 = 5 (Pulsdauer)*

Der Relaissollwert 1 wird in Einheiten (P104) eingegeben.

P211, P221, P231, P241, P251 = 6 (Differenzsteuerung)* Der Relaissollwert 1 wird in Einheiten (P104) eingegeben.

P214, P224, P234, P244, P254 Relaissollwert 2 P211, P221, P231, P241, P251 = 1 (Zeit) Dieser Parameter regelt die Zykluszeit für den Relaisbetrieb.

P211, P221, P231, P241, P251 = 2 (Sturm)* Die Relaisschaltpunkte werden in Einheiten (P104) eingegeben.

P211, P221, P231, P241, P251 = 3 (Belüftung)* Mit diesem Parameter wird in Minuten felsgelegt, wie lange das Relais angezogen bleiben soll.

P211, P221, P231, P241, P251 = 4 (Spülkippe)* Geben Sie hier die Anzahl der Spülzyklen ein.

P211, P221, P231, P241, P251 = 5 (Pulsdauer)* Relaissollwerte werden in Sekunden eingegeben und definieren die Haltezeit des Relais.

P211, P221, P231, P241, P251 = 6 (Differenzsteuerung)* Die Werte hier werden in Einheiten (P104) eingegeben.

P215, P225, P235, P245, P255 Relaissollwert 3*

P211, P221, P231, P241, P251 = 4 (Spülkippe)*

Geben Sie hier die gewünschte Spüldauer in Sekunden ein.

P211, P221, P231, P241, P251 = 5 (Pulsdauer)*

Mit diesem Parameter wird die Zeit zwischen zwei Spülvorgängen festgelegt. Die Schaltpunkte werden in Minuten eingegeben und definieren die Zeitspanne in der das Relais abgefallen bleibt.

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

12.2.9 Optional Funktion* (nur 5-Relais-Variante)

P210, P220, P230, P240, P250 = 4 (Verschiedenes) In dieser Einstellung legt der zweite Parameter die Arbeitsweise des Relais fest.

P211, P221, P231, P241, P251 – Relaisfunktion

Diese Funktion erlaubt es das Relais zeitgesteuert abhängig von einer Echtzeituhr zu schalten. Die Auswahlmöglichkeiten sind:

0 = Relais "AUS"

1 = Uhr.

Option	Beschreibung
0 = OFF	Relais immer abgefallen
1 = Uhr	Relais zieht jeden Tag entsprechend der bei Relaissollwert 1 (P213, 223, 233, 243
	 253) eingestellten Uhrzeit an und fällt nach Ablauf der unter Sollwert 2 (P214, 224, 234, 244, 254) eingestellten Ein- schaltzeit wieder ab.

!

Wenn Sie ein Relais im tageszeitabhängigen Modus benutzen stellen Sie sicher, dass die Zeit in P932 korrekt eingestellt ist. Weiter ist auf die Einstellung der Sommer- bzw. Winterzeit zu achten.

Der dritte Parameter hat in der Einstellung "optionale Funktion" keine Funktion und wird daher nicht angezeigt.

Mit dem vierten und fünften Parameter wird der Ein- bzw. Ausschaltpunkt des Relais definiert (siehe hierzu Tabelle optionale Funktion P211, 221, 231, 241, 251).

P213, P223, P233, P243, P253 Relaissollwert 1 Die Relaissollwerte werden in Stunden und Minuten eingegeben und legen fest wann das Relais anzieht. Werkseinstellung = 00:00 (SS:MM)

P214, P224, P234, P244, P254 Relaissollwert 2 Eingabe des Sollwertes in Minuten zur Festlegung der Zeitspanne in der das Relais angezogen bleiben soll. Werkseinstellung = 0.00 min. Pumpensteuerung

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

12.2.10 Pumpenzeit* (nur 5-Relais-Variante)

Wenn ein Relais auf zeitbasierte Pumpensteuerung eingestellt ist, schaltet die entsprechende Pumpe entweder bei Erreichen ihrer Schaltpunkte ein bzw. aus oder aber nach einer vordefinierten Zeitspanne, je nachdem welches Ereignis zuerst eintritt.

P210, P220, P230, P240, P250 = 5 Pumpe zeitgesteuert Ist ein Relais auf zeitgesteuerte Pumpenfunktion eingestellt, legt der zweite Parameter die Pumpenbereitschaft fest, welche den Pumpenzyklus steuert.

P211, P221, P231, P241, P251 Relaisfunktion Dieser Parameter definiert die Art der Pumpenbereitschaft auf die das Relais reagieren soll.

Pumpenbereitschaft	Beschreibung	
0 = OFF	Relais immer abgefallen	
1 = Fix/Staffel	Pumpenstaffel mit fester Zuordnung der Schalt-	
	punkte (fix), beim Erreichen der Schaltpunkte ar-	
	beiten immer alle Pumpen (Staffel).	
2 = Fix/Ersatz	Pumpen im Ersatzbetrieb mit fester Zuordnung	
	der Schaltpunkte (fix).	
3 = Alt/Staffel	Pumpen mit zyklischer Vertauschung (alternie-	
	rend), bei Erreichen der Schaltpunkte arbeiten	
	immer alle Pumpen (Staffel).	
4 = Alt/Ersatz	Pumpen im Ersatzbetrieb mit zyklischer Vertau-	
	schung (alternierend).	
5 = Ersatz + Staffel	Es sind z.B. 3 Pumpen programmiert. Die Pum-	
	pen arbeiten im Normalfall im Ersatzbetrieb. Es	
	läuft immer nur eine Pumpe. Reicht die Pumpen-	
	leistung einer Pumpe nicht aus, so steigt das	
	Wasser weiter, bis dann der Schaltpunkt der	
	nächsten Pumpe erreicht wird. Ist dies der Fall	
	und das Wasser steigt weiter, dann schaltet nach	
	10 Sekunden die zweite Pumpe dazu (Staffel).	
	Steigt auch jetzt das Wasser noch weiter, dann	
	schaltet nach weiteren 10 Sekunden auch die drit-	
	te Pumpe zu.	

!

Die Pumpen werden bei den "EIN" und "AUS" Schaltpunkten gestartet bzw. angehalten. Zum Abpumpen (Füllstand senken) setzen Sie "EIN" höher als "AUS", zum Einpumpen (Füllstand erhöhen) "EIN" niedriger als "AUS".

Der dritte relaisspezifische Parameter bestimmt die Pumpengruppe. Es können bis zu zwei Gruppen bestimmt werden. Die in P211 gewählten Funktionen arbeiten dann nur innerhalb der Gruppe.

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

P212, P222, P232, P242, P252 Relais Pumpengruppe*

In der Werkseinstellung sind alle Gruppen auf 1 gesetzt. Wenn Sie eine weitere Gruppe benötigen, müssen alle Pumpenrelais, die in der zweiten Gruppen betrieben werden sollen auf 2 gestellt werden.

Der vierte und fünfte Parameter bestimmen die "EIN"- bzw. "AUS"-Schaltpunkte der Pumpen. Diese Punkte werden in Einheiten (P104) angegeben. Im Falle von Abpumpen stellen Sie den Einschaltpunkt höher als den Ausschaltpunkt ein, bei Einpumpen genau umgekehrt (siehe Tabelle Pumpenbereitschaft P212, 222, 232, 242, 252).

P213, P223, P233, P243, P253 Relaissollwert 1* Definiert den Einschaltpunkt der Pumpe

P214, P224, P234, P244, P254 Relaissollwert 2* Definiert den Ausschaltpunkt der Pumpe

Wenn ein Relais auf zeitbasierte Pumpensteuerung eingestellt ist, definiert der sechste Parameter die maximale Laufzeit einer Pumpe bevor diese abgeschaltet wird und die nächste Pumpe übernimmt.

P215, P225, P235, P245, P255 Relaissollwert 3* Bestimmt die maximale Laufzeit einer Pumpe vor dem Abschalten und wird in Minuten eingegeben.

Die Pumpe schaltet entweder bei Erreichen des Ausschaltpunktes (Relaissollwert 2, P214, 224, 234, 244, 254) oder nach Ablauf der maximalen Laufzeit (Relaissollwert 3, P215, 225, 235, 245, 255) ab, je nachdem welches Ereignis zuerst eintritt.

P219, P229, P239, P249, P259 Maximale Änderungsrate*

Dieser Parameter erlaubt das Schalten einer Pumpe bei einer maximalen Änderungsrate des Füllstands ungeachtet des eingestellten Einschaltpunktes in P 213, 223, 233, 243, 253. Wurde ein Relais gesteuert durch die maximale Änderungsrate eingeschaltet, bleibt es angezogen bis der Füllstand den Ausschaltpunkt erreicht (P214, 224, 234, 244, 254).

Die maximale Änderungsrate wird in Einheiten (P104) eingegeben und kann ein positives (Füllstand ansteigend) oder ein negatives Vorzeichen (fallender Füllstand) haben.

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

12.2.11 Gemeinsame Parameter

P217, P227, P237, P247*, P257* Schaltspiele Der NivuMaster 5-Relais zeichnet alle Schaltspiele seit Aktivierung eines Relais

auf und zeigt diese auf dem Display an. Dieser Wert kann jederzeit zurückgesetzt werden.

P218, P228, P238, P248*, 258* Fehlermodus

Das Gerät besitzt einen allgemeinen Fehlermodus-Parameter (P808). Dieser kann jedoch überbrückt werden, so dass jedes Relais über einen eigenen, unabhängigen Fehlermodus verfügen kann.

Dieser Parameter definiert die Verhaltensweise des Relais nachdem die Fehlerzeit (P809) abgelaufen ist.

Option	Beschreibung
0 = Werkseinstellung	Relais übernimmt System Fehler (P808)
1 = Halten	Relais hält momentanen Zustand
2 = Abfallen	Relais fällt ab
3 = Anziehen	Relais zieht an

12.2.12 Erweiterte Pumpenparameter* (nur 5-Relais-Variante)

Die folgenden Parameter werden für erweiterte Pumpeneinstellungen benutzt.

Nachlauf

P349 Mindestfüllstand Eingabe eines Mindestfüllstands bei dem die Nachlauffunktion aktiv wird.

Intervall

P350 Intervall Eingabe der Betriebsstunden bevor der Nachlauf startet.

P351 Nachlauf Eingabe der eigentlichen Nachlaufzeit in Sekunden.

12.2.13 Startverzögerung* (nur 5-Relais-Variante)

P352 Pumpe -> Pumpe Eingabe der Verzögerungszeit für den Anlauf der nächsten Pumpe.

P353 Netz -> Pumpe Eingabe der Verzögerungszeit für den Anlauf der ersten Pumpe nach dem Zuschalten der Betriebsspannung, z.B. nach Netzausfall.

12.2.14 Stoppverzögerung* (nur 5-Relais-Variante)

P348 Stoppverzögerung Eingabe der Verzögerungszeit mit der eine Pumpe nach der anderen angehalten wird.

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

12.2.15 Testfunktion^{*} (nur 5-Relais-Variante)

Dieser Parameter wird zur Vermeidung von Rostbildung oder Sedimentablagerung bei Stillstand angewendet.

P354 Einschalten

Freigabe der Testfunktion. Dabei schaltet eine Pumpe nach einer zu programmierenden Zyklusdauer (P355) für eine Einschaltdauer (P356) bei einer Mindesthöhe (P357) ein.

Option	Beschreibung	
0 = Nein	Testfunktion deaktiviert	
1 = Ja	Testfunktion aktiviert	

P355 Zyklusdauer

Vorgabe der Stillstandsdauer in Minuten (Werkseinstellung = 720).

P356 Einschaltdauer

Eingabe der Einschaltdauer in Sekunden (Werkseinstellung = 30)

P357 Mindesthöhe Eingabe des Mindestfüllstands zum Schutz der Pumpe vor Trockenlauf (Werkseinstellung = 0,0)

12.2.16 Schaltbereich* (nur 5-Relais-Variante)

P360 Variabler Schaltpunkt

Eingabe eines Bereichs um den Schaltpunkt der Pumpe in Meter innerhalb dessen das Gerät variabel schaltet. Er dient der Verringerung der Fettrandbildung an den Wänden eines Pumpenschachts (F = 0.00).

12.2.17 Sturmbetrieb* (nur 5-Relais-Variante)

P370 Zustand Pumpe

Sturmbedingung bedeutet kurzzeitigen starken Niederschlag. In diesem Fall sollen bei Erreichen eines vorgegebenen Schaltpunkts die Pumpen für eine bestimmte Dauer (P371) ausgeschaltet werden.

Option	Beschreibung
0 = Nicht aktiv	Pumpen AUS
1 = Normal	Pumpen weiter EIN

P371 Dauer Pumpe AUS

Eingabe der Ausschaltdauer in Minuten, wenn Sturmbedingungen vorliegen (F = 30).

Pumpensteuerung

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

12.3 Parameter für Datenaufzeichnung

Die Datenaufzeichnungsparameter setzen sich zusammen wie beschrieben.

12.3.1 Berichte Summenzähler* (nur 5-Relais-Variante)

Die Parameter P460 bis P479 geben einen Überblick über die geförderten Gesamtmengen der letzten zehn Tage mit Datumsangabe. Die Auflistung beginnt oben mit den neuesten Werten und endet unten mit den ältesten. Ab dem elften Tag wird der jeweils älteste Bericht gelöscht und durch den neuesten ersetzt, so dass alle Berichte entsprechend nach unten verschoben werden.

Um die Richtigkeit der Aufzeichnungen sicherzustellen muss die Zeit in P932 korrekt eingestellt sein. Achten Sie hierbei auch auf die richtige Einstellung der Sommer- bzw. Winterzeit falls nötig.

12.3.2 Temperatur

Die folgenden Parameter liefern Informationen über die Temperaturen in °C, die an der in P852 eingestellten Quelle anliegen. Alle diese Parameter können lediglich ausgelesen und nicht verändert werden. Durch die Änderung von Parameter P852 jedoch können sie zurückgesetzt werden.

P580 Minimum Temperatur Dieser Parameter zeigt die aufgezeichnete Minimumtemperatur an.

P581 Datum Minimum Temperatur Hier wird angezeigt, an welchem Datum die Minimumtemperatur aufgezeichnet wurde.

P582 Zeit Minimum Temperatur Zeigt die Uhrzeit, an der die Minimumtemperatur aufgezeichnet wurde.

P583 Maximum Temperatur Dieser Parameter zeigt die aufgezeichnete Maximumtemperatur an.

P584 Datum Maximum Temperatur Hier wird angezeigt, an welchem Datum die Maximumtemperatur aufgezeichnet wurde.

P585 Zeit Maximum Temperatur Zeigt die Uhrzeit, an der die Maximumtemperatur aufgezeichnet wurde.

P586 Momentane Temperatur Dieser Parameter zeigt die momentane Temperatur an.

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

12.3.3 Aufzeichnung Pumpenbetrieb* (nur 5-Relais-Variante)

P510 Betriebsstunden Pumpe 1

Dieser Parameter zeigt die aktuelle Gesamtanzahl der Betriebsstunden für Pumpe 1 an. Hier kann ein Wert zwischen 0 und 9999 eingegeben werden um z.B. die Betriebsstunden einer nach Reparatur wieder eingebauten Pumpe zu aktualisieren.

P511 Starts Pumpe 1 Hier wird die Gesamtzahl der Einschaltvorgänge von Pumpe 1 dargestellt. Auch hier kann ein Wert von 0 – 9999 eingegeben werden (siehe oben).

P512 Starts/Stunde Pumpe 1 Dieser Parameter zeigt die Anzahl der Pumpenstarts pro Stunde an. Werteeingabe zwischen 0 und 9999 (siehe oben).

P513 Nachlauf Pumpe 1 Zeigt an wie oft Pumpe 1 nachgelaufen ist. Werteeingabe wie oben.

P514 Pump 1 Draw Einheit in m/min.

P515 Auslastung Pumpe 1 Hier wird der aktuelle Wert der Pumpenauslastung angezeigt. Dieser Wert wird mit jeder Änderung der Pump Draw Rate (P515) automatisch angepasst.

P521 – P524 Pumpe 2 P531 – P534 Pumpe 3 P541 – P544 Pumpe 4 P551 – P554 Pumpe 5 Diese Parameter enthalten die gleichen Informationen wie für Pumpe 1.

12.4 Geförderte Mengen* (nur 5-Relais-Variante)

Der NivuMaster verfügt über eine Vielzahl von Möglichkeiten zur Berechnung des Pumpendurchlaufs mit Hilfe von insgesamt 11 vorprogrammierten Behälterformen (siehe hierzu P600 Behälterform). Für jede Behälterform müssen die Abmessungen (P601-603) in den entsprechenden Einheiten (P104) eingegeben werden. Diese Werte werden zur Berechnung der Menge (P604) und deren Speicherung in der gewählten Mengeneinheit (P605) herangezogen.

Wenn die vorhandene Behälterform keiner der vorprogrammierten Formen entspricht, besteht die Möglichkeit, eine universelle Berechnung durchzuführen. Dafür benötigen Sie entweder ein Füllstands- bzw. Volumendiagramm des Behälterherstellers oder Sie können ein entsprechendes Diagramm anhand der Behälterabmessungen selbst erstellen. Dazu können bis zu 32 Stützpunktpaare eingegeben werden. Je mehr eingegebene Stützpunkte, desto höher die Genauigkeit.

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

12.4.1 Einrichtung* (nur 5-Relais-Variante)

P205 Aktivierung Fördermengenberechnung Hier wird die Fördermengenberechnung aktiviert bzw. deaktiviert.

Option	Beschreibung	
0 = Aus	Fördermengenberechnung AUS	
1 = An	Fördermengenberechnung EIN	

P206 Ruhezeit

Dieser Parameter bestimmt, wie lange der Füllstand Zeit hat um sich nach Abschaltung aller Pumpen zu beruhigen. Dies dient zur Vermeidung des Einflusses von Rückflüssen oder Turbulenzen bevor der Zulauf berechnet wird. Geben Sie die Zeit in Minuten ein. Werkseinstellung = 1 Minute.

P207 Methode Zuflussberechnung

Hier wird bestimmt, welche Methode zu Berechnung des Mediumszuflusses während der Abpumpzyklen herangezogen wird.

Option	Beschreibung
0 = Kein Zulauf	Zufluss wird während der Pumpzyklen
	nicht berechnet
1 = Durchschnitt Zulauf	Ein Mittelwert zwischen Zufluss beim
	Pumpenstart und Zufluss nach Ablauf der
	Ruhezeit wird zur Berechnung des durch-
	schnittlichen Zulaufs benutzt.

12.4.2 Umrechnung* (nur 5-Relais-Variante)

P600 Behälterform

In diesem Parameter kann die Behälterform bei der Volumenberechnung ausgewählt werde.

Die Auswahlmöglichkeiten sowie die erforderlichen Maßangaben (P601-P603) können aus der folgenden Tabelle entnommen werden.

Behälterform	P600 Wert	Maße
	P600 = 0 zylindrisch, flacher Boden	Behälterdurchmesser
	P600 = 1 rechteckig, flacher Boden	Breite und Tiefe

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

Behälterform*	P600 Wert	Маßе
	P600 = 2 zylindrisch, konischer Boden (Auslauf)	Behälterdurchmesser und Höhe des Auslaufs
	P600 = 3 rechteckig Auslauf pyramidenförmig	Breite und Tiefe des rechteckigen Teils und Höhe des Bodens
	P600 = 4 zylindrisch mit abgerundetem Boden	Behälterdurchmesser und Höhe des Bodens
	P600 = 5 zylindrisch Bodenform Halbkugel	Behälterdurchmesser
	P600 = 6 zylindrisch abgeschrägter Boden	Behälterdurchmesser und Höhe des Bodens
	P600 = 7 rechteckig Flach abgeschrägter Boden	Breite und Tiefe des rechteckigen Teils und Höhe des Bodens
	P600 = 8 liegender Tank flache Enden	Durchmesser und Länge des Tanks
	P600 = 9 liegender Tank abgerundete Enden	Durchmesser, Länge des Tanks und Länge einer der Endteile

Behälterform	P600 Wert	Маßе
	P600 = 10 Kugel	Durchmesser der Kugel
	P600 = 11 universal linear	Folgende Parameter müssen ein- gegeben werden: max. 32 Stützpunkte ab P610 bis P673
	P600 = 12 universal ge- krümmt	Folgende Parameter müssen ein- gegeben werden: max. 32 Stützpunkte ab P610 bis P673

P601 – P603* werden für die Eingabe der Behältermaße verwendet um das Volumen zu berechnen. Die Maße werden benötigt, wie in der nachfolgenden Tabelle gezeigt und in den Parameter Maßeinheiten (P104) eingegeben.

Behälterform	P601	P602	P603
P600 = 0 zylindrisch, flacher Boden	Behälter- durchmesser		
P600 = 1 rechteckig, flacher Boden		Breite des Behäl- ters	Tiefe des Be- hälters
P600 = 2 zylindrisch, konischer Boden (Auslauf)	Höhe des Bodens	Behälter- durchmesser	
P600 = 3 rechteckig Auslauf pyramidenförmig	Höhe des Bodens	Breite des Behäl- ters	Tiefe des Be- hälters
P600 = 4 Zylindrisch mit abgerundetem Boden	Höhe des Bodens	Behälter- durchmesser	
P600 = 5 zylindrisch, abgeschräg- ter Boden	Behälter- durchmesser		
P600 = 6 zylindrisch, abgeschräg- ter Boden	Höhe des Bodens	Behälter- durchmesser	
P600 = 7 rechteckig, flach abgeschrägter Boden	Höhe des Bodens	Breite des Behäl- ters	Tiefe des Be- hälters
P600 = 8 liegender Tank, flache Enden	Länge des Behäl- ters	Behälter- durchmesser	
P600 = 9 liegender Tank, abgerundete Enden	Länge des Behäl- ters	Behälter- durchmesser	Länge eines der Endteile
P600 = 10 Kugel	Durchmesser der Kugel		

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

P604 Berechnete Menge*

Hier wird die vom NivuMaster 5-Relais berechnete Menge angezeigt. Es handelt sich hier um einen Wert, der lediglich ausgelesen und nicht bearbeitet werden kann. Er wird in m³ angegeben und bezeichnet die verfügbare Gesamtmenge zwischen Leerstand (P105) und 100% des Messbereichs (P106).

Nr.	Parameter	Auswahl	Beschreibung
604	Berechneter Inhalt	Dieser Wert kann nur	Anzeige des berechneten Behälterinhalts
		abgelesen, jedoch	aufgrund der vorgegebenen Maße.
		nicht verändert wer-	
		den.	
605	Einheit Menge	0 = Ohne Inhalt	Dieser Parameter bestimmt die Einheit, die
		1 = Tonnen	für die Volumenberechnung angezeigt wer-
		2 = LongTons	den soll. Sie wird verwendet in Verbindung
		3 = Kubikmeter	mit P607 (max. Volumen). Die Einheiten
		4 = Liter	werden am Display angezeigt (unterliegt
		5 = Brit. Gallonen	P801).
		6 = US-Gallonen	
		7 = Cubic ft	
		8 = Barrels	

Korrekturfaktor P606*

Dieser Parameter wird zur Eingabe eines Korrekturfaktors genutzt. Mit dem Korrekturfaktor können Unterschiede zwischen dem berechneten Behälterinhalt und Max. Volumen, z.B. Materialdichte, berücksichtigt werden.

Max. Volumen P607*

Dieser Parameter zeigt den maximalen Behälterinhalt unter Berücksichtigung des Korrekturfaktors an.

Z.B. P604 Berechneter Inhalt x P606 Korrekturfaktor, dieser Parameter kann nur gelesen werden, Änderungen sind nicht möglich.

12.4.3 Stützpunkte*

Parameter P610 – P673 Füllstand/Volumen Stützpunkte

Diese Parameter werden verwendet um ein Profil des Behälters zu erzeugen, wenn Universalbehälterformen gewählt werden (P600 = 11 oder P600 = 12). Die Stützpunkte müssen als Wertepaare eingegeben werden.

Mindestens 2 (P610 und P611), jedoch maximal 32 Wertepaare (P672 und P673) sollen eingegeben werden.

Je mehr Stützpunkte eingegeben werden, desto genauer wird das Profil sein. Im Falle von universell linear geben Sie für jeden Punkt, an dem sich die Gefäßform ändert, einen Stützpunkt ein. Ist universell gebogen gewählt, müssen sowohl die Werte der Bogentangente als auch von Oberseite und Boden eingegeben werden.

Geben Sie mindestens 2 und höchstens 32 Punktepaare ein.

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

Universal linear* (P600 = 11)

Diese Art der Mengenberechnung erzeugt einen linearen Näherungswert der Beziehung Füllstand / Menge und funktioniert am besten, wenn jeder Abschnitt des Behälters durch scharfe Winkel abgegrenzt ist.

Bei jeder Richtungsänderung innerhalb des Behälters sollte ein Stützpunktepaar angegeben werden. Bei leichten Biegungen ist die Eingabe einer höheren Anzahl von Stützpunkten notwendig. Es können beliebig viele Paare zwischen 2 und 32 eingegeben werden.

Universal gekrümmt* (P600 = 12)

Diese Art der Mengenberechnung erzeugt einen Näherungswert der Beziehung Füllstand / Menge in Form einer Kurve und funktioniert am besten, wenn der Behälter eine nichtlineare Form hat und es keine scharfen Abkantungen gibt.

Es müssen 2 Stützpunktepaare für Minimum- und Maximumfüllstand eingegeben werden und eine größere Anzahl von Punkten bei Biegungen im Behälter. Mindestens 2 (P610 und P611), jedoch maximal 32 Wertepaare (P672 und P673) sollen eingegeben werden.

Je mehr Wertepaare, desto genauer wird das Profil.

12.4.4 Liste der Stützpunkte*

Rücksetzen der Stützpunkte (P696)

Dieser Parameter erlaubt das Zurücksetzen aller Stützpunkte (P610-673) auf ihre Werkseinstellung ohne auf jeden Stützpunkt einzeln zugreifen zu müssen. Sollen einzelne Stützpunkte zurückgesetzt bzw. bearbeitet werden, kann dies direkt durch Zugriff auf den entsprechenden Parameter (P610-673) und gewünschte Eingabe vorgenommen werden.

Anzahl der gesetzten Stützpunkte (P697)

Hier erhalten Sie einen Überblick über die Anzahl der gesetzten Stützpunkte. Dieser Wert kann nur ausgelesen und daher nicht verändert werden.

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

12.5 Pumpeneffizienz* (nur 5-Relais-Variante)

12.5.1 Einrichten*

P187 Pumpenauslastung

Dieser Parameter legt fest ob Pumpeneffizienz aktiviert ist oder nicht.

Option	Beschreibung
0 = Aus	Pumpeneffizienz nicht aktiv
1 = Ein	Pumpeneffizienz aktiv

P188 Verzögerung Kalibrierung

Mit diesem Parameter kann eine Verzögerung festgelegt werden welche gewährleistet, dass sich die Oberfläche des Messmediums zwischen zwei Pumpzyklen und vor dem eigentlichen Messvorgang beruhigt hat um Störung durch Turbulenzen o.ä. zu vermeiden. Die Verzögerungszeit wird in Sekunden eingegeben. Werkseinstellung = 45 Sekunden.

Beim Einstellen der Kalibrierverzögerung (P188) ist darauf zu achten, dass die Verzögerungszeit nicht höher als die Zeit zwischen zwei Pumpzyklen im Normalbetrieb eingestellt wird.

P189 Dauer Kalibrierung

Mit Hilfe dieses Parameters wird die Zeitdauer festgelegt, innerhalb welcher die Pumpen überwacht werden und die daraus resultierende Pumpeneffizienz berechnet wird.

Beim Einstellen der Zeitdauer (P189) ist darauf zu achten, dass der Wert die Dauer zwischen zwei Pumpenstarts nicht überschreitet, da dies zum Abbruch der nachfolgenden Berechnung der Pumpeneffizienz führt.

P190 Haltezähler

Wird eine Alarmmeldung benutzt um anzuzeigen, dass eine Pumpe unter einen vorgegebenen Auslastungswert gefallen ist, bestimmt dieser Parameter, wie oft die betreffende (fortlaufende) Pumpe mit verminderter Effizienz laufen darf bevor die Alarmmeldung ausgegeben wird. Der Zähler kann auf einen beliebigen Wert zwischen 0 und 99 eingestellt werden. Werkseinstellung = 6.

P191 Pumpen zurückstufen

Dieser Parameter wird benutzt, um eine Pumpe im Falle eines Effizienzalarms auf die letzte Position der Reihenfolge innerhalb der Pumpenbereitschaft zurückzustufen. Ist diese Funktion aktiv und eine Alarmmeldung wird nach Ablauf des Haltezählers (P190) ausgegeben, setzt dies die Reihenfolge innerhalb der Pumpenbereitschaft auf einen voreingestellten Wert zurück. Die am wenigsten ausgelastete Pumpe wird an die letzte Stelle gesetzt und läuft erst wieder wenn der Füllstand den für diese Pumpe gesetzten Wert erreicht. Eine zurückgestufte Pumpe wird durch eine rot blinkende LED am entsprechenden Relais angezeigt.

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

Option	Beschreibung
0 = Aus	Zurückstufung nicht aktiv
1 = Ein	Zurückstufung aktiv

P192 Kennzeichnung Zurückstufung*

Hier wird mittels einer zweistelligen Zahl angezeigt ob und wenn ja welche Pumpen zurückgestuft wurden. Zurückgestufte Pumpen können durch Eingabe von "0" wieder auf ihren Ursprungswert zurückgesetzt werden.

0 = keine	16 = Pumpe 5
1 = Pumpe 1	17 = Pumpen 1 + 5
2 = Pumpe 2	18 = Pumpen 2 + 5
3 = Pumpen 1 + 2	19 = Pumpen 1, 2 + 5
4 = Pumpe 3	20 = Pumpen 3 + 5
5 = Pumpen 1 + 3	21 = Pumpen 1, 3 + 5
6 = Pumpen 2 + 3	22 = Pumpen 2, 3 + 5
7 = Pumpen 1, 2 + 3	23 = Pumpen 1, 2, 3 + 5
8 = Pumpe 4	24 = Pumpen 4 + 5
9 = Pumpen 1 + 4	25 = Pumpen 1, 4 + 5
10 = Pumpen 2 + 4	26 = Pumpen 2, 4 + 5
11 = Pumpen 1, 2 + 4	27 = Pumpen 1, 2, 4 + 5
12 = Pumpen 3 + 4	28 = Pumpen 3, 4 + 5
13 = Pumpen 1, 3 + 4	29 = Pumpen 1, 3, 4 + 5
14 = Pumpen 2, 3 + 4	30 = Pumpen 2, 3, 4 + 5
15 = Pumpen 1, 2, 3 + 4	31 = Pumpen 1, 2, 3, 4 + 5

P193 Kalibrierung Pumpen*

Dieser Parameter kalibriert die Pumpen und definiert den Punkt der optimalen Auslastung (100%), von dem aus alle weiteren Effizienzberechnungen abgeleitet werden. Jede Pumpe kann entweder einzeln kalibriert (Optionen 1-5) oder aber es kann ein Wert für alle Pumpen übernommen werden. Sollen Pumpen einzeln kalibriert werden, ist es unbedingt nötig darauf zu achten, dass der Füllstand im Behälter über dem Einschaltpunkt der Pumpe liegt. Ist eine Pumpe für die Einzelkalibrierung ausgewählt, werden Sie aufgefordert in den RUN Modus zu wechseln. Nach Ablauf der in P188 Verzögerung Kalibrierung eingestellten Zeitspanne schaltet die Pumpe ein. Die verstreichende Zeit wird dabei im Display als Countdown angezeigt. Die Pumpe läuft jetzt für die in P189 Dauer Kalibrierung eingestellte Zeit. Danach ist die Berechnung der Pumpeneffizienz abgeschlossen und die Pumpe schaltet wieder in den Normalbetrieb um. Sollen die Pumpen automatisch kalibriert werden (Option 7), wird jede Pumpe nach Rückkehr in den RUN Modus bei ihrem nächsten Start kalibriert.

12.6 Parameter Anzeige

12.6.1 Optionen

P800 Einheiten Anzeige

Dieser Parameter bestimmt, ob der Messwert in Einheiten (P104) oder Prozentwert der Messspanne angezeigt wird.

Option	Beschreibung
0 = Gemessen	Anzeige in Messeinheiten (P104)
1 = Prozentwert	Anzeige in Prozent des Messbereichs

P801 Kommastellen

Mit diesem Parameter wird die Anzahl der Kommastellen auf der Anzeige im RUN Modus festgelegt.

Minimum = 0 (keine Kommastellen), Maximum = 3 (3 Kommastellen),

Maximum = 3 (3 Kommastellen), Werkseinstellung = 2 (2 Kommastellen).

P802 Offset Anzeige

Der Wert dieses Parameters wird zum Messwert in Einheiten (P104) hinzugezählt, bevor die Anzeige auf dem Display ausgegeben wird. Dies beeinflusst jedoch nicht die Relaisschaltpunkte oder den mA-Ausgang, sondern nur die Anzeige. Hiermit kann z.B. eine Anzeige auf Meereshöhe bezogen werden, wobei der Abstand zwischen Leerstand (P105) und Meereshöhe eingegeben wird. Liegt der Leerstand unter Meereshöhe, müsste hier ein negativer Wert eingegeben werden.

P804 Faktor Anzeige

Der Wert dieses Parameters wird mit dem Messwert multipliziert, bevor die Anzeige auf dem Display ausgegeben wird. Die Werkseinstellung beträgt 1,0. Sollen Messwerte jedoch beispielsweise in Yards angezeigt werden, stellen Sie die Einheiten (P104) auf Fuß und P804 auf den Wert 3.

P805 Ursprung Anzeige*

Hier wird festgelegt, auf welchen Eingang sich die Anzeige bezieht. Dies geschieht normalerweise automatisch sobald Betriebsmode P100 und Sensortyp P101 festgelegt ist und braucht im Regelfall nicht geändert zu werden.

Option	Beschreibung
0 = Werkseinstellung	Anzeige bezieht sich auf gewählten Be-
	triebsmode P100
1 = Aux	Anzeige des optionalen Hilfseingangs
2 = Sensor 1	Anzeige der Werte von Sensor 1
3 = Sensor 2	Anzeige der Werte von Sensor 2 wenn
	P100 = 4 (Mittelwert) oder 5 (Differenz)

NivuMaster Serie - Rev. 05 / 20.04.2018

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

12.6.2 Fehlermode

P808 Fehlermode

Das Gerät ist ab Werk so eingestellt, dass im Falle einer Fehlermeldung Display, Relais und der mA-Ausgang so lange auf den letzten erkannten Werteeinstellungen verbleiben bis neue Messwerte anliegen. Diese Einstellung kann falls gewünscht dahingehend geändert werden, dass der NivuMaster im Fehlerfall an das obere oder das untere Ende des Wertebereichs springt:

Option	Beschreibung
1 = letzter Wert	Bleibt auf dem letzten erkannten Wert
2 = High	Springt zum oberen Ende (100 %) des
	Messbereichs
3 = Low	Springt zum unteren Ende (Leerstand)
	des Messbereichs

Siehe hierzu auch P218 (RL 1), P228 (RL 2), P238 (RL 3), P248* (RL 4), P258* (RL 5) Relaisfehlermode und P840 Fehlermode mA-Ausgang.

Sollte ein Fehlerereignis auftreten, können Display, Relais und mA-Ausgang so programmiert werden, dass sie in voneinander unabhängige Zustände schalten. Zur Einstellung des unabhängigen Relaisfehlermodus siehe P218 (RL 1), P228 (RL 2) und P238 (RL 3, P248* (RL 4), P258* (RL 5)). Für den unabhängigen Fehlermode des mA-Ausgangs siehe P840.

P809 Fehlerzeit

Eingabe der Zeitdauer nach Auftreten eines Fehlers bevor die Fehlerfunktion aktiviert wird. Werkseinstellung = 2 Minuten.

12.6.3 Statusanzeige

P810 Einheiten

Dieser Parameter definiert ob die Messeinheiten (P104) im Display angezeigt werden oder nicht.

Option	Beschreibung
0 = Nein	Messeinheiten werden nicht angezeigt
1 = Ja	Messeinheiten werden angezeigt

P811 Alarmmeldungen

Hier wird festgelegt ob auf dem Display Alarmmeldungen ausgegeben werden oder nicht. Die Art der Alarmmeldung bezieht sich auf die in P212, 222 und 232 eingestellte Alarmart.

Option	Beschreibung
0 = Nein	Alarmmeldungen werden nicht angezeigt
1 = Ja	Alarmmeldungen werden angezeigt

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

P812 Pumpenstatus

Dieser Parameter definiert die Anzeige des Pumpenstatus, d.h. ob eine Pumpe eingeschaltet ist oder nicht.

Option	Beschreibung
0 = Nein	Pumpenstatus wird nicht angezeigt
1 = Ja	Pumpenstatus wird angezeigt

P813 Steuerung

Dieser Parameter entscheidet über die Anzeige von Informationen über den Schaltzustand von Steuerungsrelais.

Option	Beschreibung
0 = Nein	Schaltzustand wird nicht angezeigt
1 = Ja	Schaltzustand wird angezeigt

P814 Status Relaisoptionen

Bestimmt ob der Status der Relaisoptionen angezeigt wird oder nicht.

Option	Beschreibung
0 = Nein	Relaisoption wird nicht angezeigt
1 = Ja	Relaisoption wird angezeigt

P815 optionaler Hilfseingang*

Wenn der Parameter P100 auf 4 (Mittelwert) oder 5 (Differenz) eingestellt ist, besteht hier die Möglichkeit, den Stand jedes der beiden Messpunkte anzuzeigen.

Option	Beschreibung
0 = Aus	Kein Füllstand wird angezeigt
1 = mA-Eingang (optional)	Zeigt den Füllstand des optionalen Hilfs-
	eingangs an
2 = Sensor 1	Zeigt den Füllstand von Sensor 1 an
3 = Sensor 2	Zeigt den Füllstand von Sensor 2 an

P816 Summenzähler (rücksetzbar)*

Diese Option bestimmt, ob der nicht zurücksetzbare Summenzähler auf dem Display erscheint oder nicht. Diese Funktion kann nur gewählt werden, wenn P205 Fördermengenberechnung aktiv ist.

P817 Offset Hilfsanzeige*

Steht P100 entweder auf 4 (Mittelwert) oder 5 (Differenz), so wird der hier eingestellte Offset zum Wert der Hilfsanzeige in Einheiten (P104) hinzugezählt. Dies beeinflusst weder Relaisschaltpunkte noch den mA-Ausgang, sondern wirkt sich lediglich auf die Anzeige aus.

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

12.6.4 Bargraph*

P829 Bargraph

Gemäß Werkseinstellung entspricht die Balkenanzeige des Bargraph dem anliegenden Messwert wie in P100 Betriebsmode eingestellt. Ist hier 4 (Mittelwert) oder 5 (Differenz) gewählt, kann der Bargraph den Füllstand jedes der beiden Messpunkte anzeigen. Der Parameter wird normalerweise bei der Einstellung von P100 automatisch richtig eingestellt und muss im Regelfall nicht verändert werden.

Die Einstellmöglichkeiten sind (abhängig von der Einstellung in P100) wie folgt:

Option	Beschreibung
1 = optionaler Hilfseingang	Bargraph zeigt den Füllstand des optionalen
	Hilfseingangs an
2 = Sensor 1	Bargraph zeigt den Füllstand von Sensor 1
	an
3 = Sensor 2	Bargraph zeigt den Füllstand von Sensor 2
	an
4 = Mittelwert bzw.	Bargraph zeigt entweder den Füllstands-
Differenz 1/2	mittelwert oder den Differenzwert beider
	Messpunkte an

12.6.5 Summenzähler

P820 Summenzähler

Zeigt den aktuellen Wert des nicht zurücksetzbaren Summenzählers an. Im RUN Mode kann dieser mit Hilfe des entsprechenden Tastenkürzels aufgerufen werden. Anders als der rücksetzbare Summenzähler kann der hier Beschriebene nicht im RUN Mode zurückgesetzt werden. Dies ist jedoch im Programmiermode durch die Eingabe von P820 Summenzähler auf 0 möglich.

P821 Summenzähler (rücksetzbar)

Zeigt den aktuellen Wert des zurücksetzbaren Summenzählers an. Dieser Zähler kann im RUN Mode auf der Hilfsanzeige permanent (P816) oder aber tempo-

rär durch Benutzung des Tastenkürzels \sum angezeigt werden.

P822 Kommastellen Summenzähler

Dieser Parameter legt die Kommastellen des Summenzählers fest. Dies können zwischen 1 und 3 Stellen sein. F = 2.

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

P823 Faktor Summenzähler

Mit dem in diesem Parameter eingegebenen Faktor wird die schrittweise Erhöhung der Summenanzeige multipliziert.

Option	Beschreibung
1 = 1/1000	Zählt in Schritten von 1/1000 Einheit wei-
	ter
2 = 1/100	Zählt in Schritten von 1/100 Einheit weiter
3 = 1/10	Zählt in Schritten von 1/10 Einheit weiter
4 = 1	Zählt in Schritten von 1 Einheit weiter
5 = 10	Zählt in Schritten von 10 Einheiten weiter
6 = 100	Zählt in Schritten von 100 Einheiten weiter
7 = 1000	Zählt in Schritten von 1000 Einheiten wei-
	ter
8 = 10.000	Zählt in Schritten von 10.000 Einheiten
	weiter
9 = 100.000	Zählt in Schritten von 100.000 Einheiten
	weiter
10 = 1.000.000	Zählt in Schritten von 1.000.000 Einheiten
	weiter

12.7 Parameter mA-Ausgang

12.7.1 Bereich

P830 mA Bereich

Dieser Parameter bestimmt den Bereich des mA-Ausgangs.

Option	Beschreibung
0 = Aus	mA-Ausgang nicht aktiv
1 = 0 bis 20 mA	mA-Ausgang direkt proportional zur mA-
	Zuordnung (P831), d.h. bei Messwert 0 %
	liegt der mA-Ausgang bei 0 mA, bei
	Messwert 100 % bei 20 mA.
2 = 4 bis 20 mA	mA-Ausgang direkt proportional zur mA-
	Zuordnung (P831), d.h. bei Messwert 0 %
	liegt der mA-Ausgang bei 4 mA, bei
	Messwert 100 % bei 20 mA.
3 = 20 bis 0 mA	mA-Ausgang umgekehrt proportional zur
	mA-Zuordnung (P831), d.h. bei Messwert
	0 % liegt der mA-Ausgang bei 20 mA, bei
	Messwert 100 % bei 0 mA.
4 = 20 bis 4 mA	mA-Ausgang umgekehrt proportional zur
	mA-Zuordnung (P831), d.h. bei Messwert
	0 % liegt der mA-Ausgang bei 20 mA, bei
	Messwert 100 % bei 4 mA.

Pumpensteuerung

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

12.7.2 Betriebsart

P831 mA-Betriebsart

Mit Hilfe dieses Parameters wird bestimmt, wie der mA-Ausgang auf gemessene Werte anspricht. Nach der Werkseinstellung reagiert er genau wie das Display (P100), kann jedoch auch wie folgt eingestellt werden:

Option	Beschreibung
0 = Werkseinstellung	mA-Ausgang entspricht Betriebsmode
	P100
1 = Abstand	mA-Ausgang entspricht Abstand
2 = Füllstand	mA-Ausgang entspricht Füllstand
3 = Leerraum	mA-Ausgang entspricht Leerraum
4 = Mittelwert Füllstand*	mA-Ausgang entspricht dem Mittelwert
	des Füllstands zwischen 2 Messpunkten
	(P100 = 4)
5 = Differenz*	mA-Ausgang entspricht der Differenz von
	zwei Messpunkten (P100 = 5)

12.7.3 Grenzwerte

Gemäß der Werkseinstellung entspricht der mA-Ausgang dem minimalen (0 bzw. 4 mA, siehe P830) oder dem maximalen Füllstand (20 mA). Es kann jedoch erwünscht sein, dass er nur einen gewissen Abschnitt des gesamten Bereichs anzeigen soll. So kann z.B. der maximale Bereich 6 m umfassen, es soll jedoch nur der Bereich zwischen Leerstand und 5 m Füllstand angezeigt werden. Dazu muss P834 (Min. Füllstand) auf 0.00 m und P835 (Max. Füllstand) auf 5 m eingestellt werden.

P834 mA Min. Füllstand

Dieser Parameter bestimmt Füllstand, Abstand oder Leerraum (abhängig von der gewählten mA-Betriebsart P831), bei dem der mA-Ausgang seinen niedrigsten Wert erreicht (0 bzw. 4 mA je nach Einstellung von P830). Werkseinstellung = 0,000 m.

P835 mA Max. Füllstand

Dieser Parameter bestimmt Füllstand, Abstand oder Leerraum (abhängig von der gewählten mA-Betriebsart P831), bei dem der mA-Ausgang seinen höchsten Wert erreicht (20 mA). Werkseinstellung = 6,000 m.

12.7.4 Grenzen

P836 Min. Begrenzung

Hier wird der niedrigste Wert auf den der mA-Ausgang fallen kann festgelegt. Die Werkseinstellung liegt bei 0 mA. Diese Einstellung kann jedoch umgangen werden, wenn z.B. ein angeschlossenes Gerät Werte unter 2 mA nicht verarbeiten kann, der gesamte Bereich von 0-20 mA aber trotzdem zur Verfügung stehen soll. Werkseinstellung = 0,00 mA.

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

P837 Max. Begrenzung

Dieser Parameter bestimmt den höchsten Wert auf den der mA-Ausgang steigen kann. Die Werkseinstellung liegt bei 20 mA. Diese Einstellung kann jedoch umgangen werden, wenn z.B. ein angeschlossenes Gerät Werte über 18 mA nicht verarbeiten kann, der gesamte Bereich von 0-20 mA aber trotzdem zur Verfügung stehen soll. Werkseinstellung = 20,00 mA.

12.7.5 Feinabgleich

P838 Unterer Wert

Falls ein angeschlossenes Gerät nicht kalibriert sein sollte und den unteren (Mess-)Wert nicht korrekt anzeigt, kann dies mit Hilfe dieses Parameters ausgeglichen werden. Hier kann entweder der Offset direkt eingegeben oder mit Hilfe der Pfeiltasten so lange nach oben oder unten verschoben werden, bis das gewünschte Ergebnis angezeigt wird.

P839 Oberer Wert

Falls ein angeschlossenes Gerät nicht kalibriert sein sollte und den oberen (Mess-)Wert nicht korrekt anzeigt, kann dies mit Hilfe dieses Parameters ausgeglichen werden. Hier kann entweder der Offset direkt eingegeben oder mit Hilfe der Pfeiltasten so lange nach oben oder unten verschoben werden, bis das gewünschte Ergebnis angezeigt wird.

12.7.6 Fehlermode für mA-Ausgang separat

P840 Fehlermode für mA-Ausgang separat

Dieser Parameter definiert wie sich der mA-Ausgang verhält falls das Gerät in den Fehlermode schaltet. Bei der Werkseinstellung reagiert der Ausgang genau wie im System-Fehlermode (P808). Dies kann jedoch umgangen und der mA-Ausgang auf einen separaten Fehlermode umprogrammiert werden.

Option	Beschreibung
0 = Werkseinstellung	Wert aus P808
1 = Halten	mA-Ausgang hält letzten erkannten Wert
2 = Min.	mA-Ausgang fällt auf den niedrigsten Wert
3 = Max.	mA-Ausgang springt zum höchsten Wert

12.7.7 Zuordnung

P841 mA-Zuordnung*

Gemäß der Werkseinstellung repräsentiert der mA-Ausgang den erkannten Messwert wie in P100 festgelegt. Im Falle der Einstellungen 4 (Mittelwert) oder 5 (Differenz) repräsentiert der Bargraph den Füllstand jedes der beiden Messpunkte. Der Parameter wird normalerweise bei den Einstellung von P100 und P101 (Sensor) automatisch richtig eingestellt und muss im Regelfall nicht verändert werden.

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

Die Optionen sind in Abhängigkeit des in P100 eingestellten Wertes wie folgt:

Option	Beschreibung
1 = Hilfseingang (optional)	mA-Ausgang bezieht sich auf Füllstand
	vom optionalen Hilfseingang
2 = Sensor 1	mA-Ausgang bezieht sich auf Füllstand
	von Sensor 1
3 = Sensor 2*	mA-Ausgang bezieht sich auf Füllstand
	von Sensor 2
4 = Mittelwert*	mA-Ausgang bezieht sich auf den Durch-
	schnittswert aus zwei Messpunkten (P100
	= 4)
5 = Differenz*	mA-Ausgang bezieht sich auf die Diffe-
	renz aus zwei Messpunkten (P100 = 5)

12.8 Kompensation

(Stabilität, Echoverarbeitung, System, Schnittstelle, Test/Simulation - siehe Kapitel 13.17)

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

12.9 Beispiele

12.9.1 Pumpensteuerung

Pumpenstaffel ohne Vertauschung

In einem Pumpensumpf sollen zwei Pumpen im Staffelbetrieb einen Pumpensumpf entleeren.

Eine Pumpenvertauschung soll nicht stattfinden.

Pumpe 1 startet bei 1,5 m und schaltet bei 0,5 m aus.

Pumpe 2 startet bei 2 m und schaltet bei 0,5 m aus.

Pumpenstaffel mit Vertauschung

In einem Pumpensumpf sollen zwei Pumpen im Staffelbetrieb einen Pumpensumpf entleeren.

Nach einem Zyklus sollen die Pumpen getauscht werden. Pumpe 1 startet bei 1,5m und schaltet bei 0,5m aus.

Pumpe 2 startet bei 2m und schaltet bei 0,5m aus.

Ersatzbetrieb mit Vertauschung

Zwei Pumpen werden vom NivuMaster gesteuert. Es darf jedoch immer nur eine Pumpe arbeiten.

Wenn Pumpe 2 einschaltet, muss Pumpe 1 ausschalten. Die Pumpen werden nach jedem Zyklus getauscht.

Pumpen im Ersatzbetrieb mit festen Schaltpunkten

Zwei Pumpen werden vom NivuMaster gesteuert. Es darf jedoch immer nur eine Pumpe arbeiten.

Wenn Pumpe 2 einschaltet, muss Pumpe 1 ausschalten.

Die Pumpenschaltpunkte sind fest zugeordnet.

Relaisprogrammierung

12.9.2 Sonderfunktionen

Einschaltverzögerung

Diese Funktion sorgt dafür, dass die Netzversorgung nach dem Wiedereinschalten der Spannung durch das zusätzliche oder gleichzeitige Anlaufen der Pumpen nicht überlastet wird.

Pumpennachlauf

Diese Funktion kann zur Restentleerung bei Pumpensümpfen benutzt werden, wenn in diesem Bereich eine Messung nicht möglich ist.

Variabler Schaltpunkt

Diese Funktion wird z.B. verwendet, um das Anwachsen von Fetträndern im Pumpensumpf zu verringern.

Funktionstest

Diese Funktion wird verwendet, um bei Pumpen nach längeren Stillstandzeiten die Funktion zu überprüfen. Zum Beispiel während Trockenperioden im Sommer, bei denen der Einschaltpunkt nicht erreicht wird.

Sturmfunktion

Wird ein Füllstand erreicht, der im normalen Betrieb nicht erreicht wird, so schaltet die Pumpe für die eingestellte Dauer (P371) aus. Sturmfunktion

Belüftung

Spülkippe

Nach einer einzugebenden Anzahl von Pumpenzyklen, zieht das programmierte Relais für die eingestellte Dauer an.

13 Menge

13.1 Start des Programmiermode

Zuerst muss vom RUN-Mode in den Programmiermode gewechselt werden. Dazu ist der Zugangscode einzugeben

1	9	9	7
l	/ /		1

Zugangscode eingeben und bestätigen.

13.1.1 Schnellstart (siehe Kapitel 10.1.1)

13.2 Applikationsauswahl

Es gibt 6 Applikationsvarianten, welche alle in diesem Kapitel beschrieben werden: Diese sind

- exponentiell,
- Gerinne (Venturi)
- Wehr
- Fläche/Geschwindigkeit (A / V)
- Spezial und Universal.

Durchflussberechnungen können sowohl absolut als auch proportional durchgeführt werden. Da beide Verfahren zum selben Ergebnis kommen, hängt die Auswahl der Berechnungsmethode von den verfügbaren Informationen und den Messvorgaben ab. Im Falle proportionaler Berechnung ist es ausreichend, den maximalen Durchfluss bei maximaler Überfallhöhe der fraglichen Einrichtung zu kennen. Alle Arten primärer Messeinrichtungen können mit einer Auswahl von Alarmen versehen werden.

Bei der grundsätzlichen Programmierung einer exponentiellen Messeinrichtung wie im nachfolgenden Beispiel geben Sie 1 ein.

Wählen Sie nun unter folgenden Vorgaben aus:

- gestauchtes Rechteckwehr,
- Cipolletti-Wehr (Dreieckswehr)
- Venturi
- Parshall-Gerinne
- Leopold-Lagco-Gerinne
- V-Wehr oder Andere für jede andere Art exponentieller Einrichtung.

Um die Applikation bei einer Venturi einzurichten geben Sie "2" ein und wählen zwischen den Optionen Rechteckgerinne mit oder ohne Schwelle, U-Profil mit oder ohne Schwelle.

Bei einem Wehr wie in Beispiel Abb. 13-8 beschrieben wählen Sie bitte aus Rechteckwehr, V-Wehr 90°, V-Wehr 53°8' oder V-Wehr 28°4'.

Im Fall Bereichsgeschwindigkeit drücken Sie bitte die 4 und wählen Sie aus den Optionen U-Profil (halbkreisförmiger Boden mit geraden Seiten, Rechteckkanal, trapezförmiger Kanal oder Rundrohr).

Drücken Sie 5 wenn Sie eine Sondereinrichtung programmieren wollen. Dann wählen Sie aus Palmer-Bowlus-Gerinne, H-Gerinne oder V-Wehr, sofern es sich hierbei um ein anderes V-Wehr als unter 3 beschrieben handelt.

Sollte Ihre Applikation keiner der vorgenannten Vorgaben entsprechen, wählen Sie die Option 6 Universal. Sie haben dann die Wahl zwischen den folgenden Möglichkeiten: linearer Durchfluss oder gekrümmter Durchfluss. Nachdem Sie Ihre Applikation ausgewählt haben werden weitere Optionen abgefragt, die Sie an Hand der folgenden Tabelle eingeben können. Danach benötigt der NivuMaster noch weitere Informationen um die Programmierung abschließen zu können. Diese können ebenfalls mit Hilfe der folgenden Liste einfach komplettiert werden.

Flussdiagramm Mengenmessung siehe S. 177.

Nr.	Parameter	Werkseinstellung	Beschreibung	
P101	Sensor	1 = PM 3	Verwendeter Sensor.	
P706	Mengeneinheiten	1 = Liter	Für Berechnung und A	Anzeige benutzte
			Mengeneinheit.	
			1 = Liter	$2 = m^3$
			$3 = ft^3$	4 = UK Gallons
			5 = US Gallons	6 = mio. US Gallons
P707	Zeiteinheiten	1 = pro Sekunde	Für Berechnung und A Zeiteinheit.	Anzeige benutzte
			1 = Einheiten/Sek.	2 = Einheiten/Min.
			3 = Einheiten/Std.	4 = Einheiten/Tag
P104	Messeinheiten	1 = Meter	Dient zur Eingabe und	zur Anzeige von
			Abmessungen.	-
			1 = Meter	2 = Zentimeter
			3 = Millimeter	4 = Fuß
			5 = Zoll	
P105	Leerstand	2,425 m	Abstand zwischen Se	ndefläche Sensor
			bzw. Sensortrichter (F	M 3) und Behäl-
			terboden.	
Nr.	Parameter	Werkseinstellung	Beschreibung	
P703	minimale Überfallhö-	0,000 m	Abstand zwischen Lee	erstand und Füllstand
	he		bei minimalem Durchf	luss.
P704	maximale Überfallhö-	2,425 m	Abstand zwischen Fül	llstand bei minimalem
	he		Durchfluss und maxim	nalem Durchfluss.
			Bitte beachten Sie, da	iss sich Änderungen
			in P704 auch auf P10	6 (Messspanne) aus-
			wirken und umgekehr	t.
P824	Summenzähler ein	1 = EIN	Aktiviert den Durchflus	ss-Summenzähler
			(0 = AUS, 1 = EIN). D	ieser Zähler während
			des Betriebs mit einer	n Tastenkürzel abge-
			lesen werden. Rückse	etzen nur möglich
			über P820 im Progran	nmode.
P816	Summenzähler rück-	0 = Nein	Aktiviert die Anzeige o	des rücksetzbaren
	setzbar		Summenzählers im H	Iltsdisplay. Dieser
			Summenzähler kann i	m Betriebsmode mit
			dem entsprechenden	I astenkürzel zurück-
			gesetzt werden.	

P823	Faktor Summen-	4 = x1	Bestimmt den Faktor,	mit dem das berech-
	zähler		nete Volumen multipliz	ziert bzw. durch den
			es dividiert wird.	
			1 = /1000	2 = /100
			3 = /10	4 = x1
			5 = x10	6 = x100
			7 = x1.000	8 = x10.000
			9 = x100.000	10 = x1.000.000

Die verbleibenden Parameter, die für die Vervollständigung der Applikationseinrichtung noch benötigt werden folgen unmittelbar auf die obigen Parameter. Sie beziehen sich auf Einzelheiten, die für die Durchführung der Berechnungen nötig sind und hängen von der gewählten Messeinrichtung sowie von der selektierten Berechnungsmethode ab. Bitte geben Sie die entsprechenden Werte nach Aufforderung ein.

Nr.	Parameter	Werkseinstellung	Beschreibung
P705	maximaler Durchfluss	0,000	Geben Sie den bekannten maximalen
			Durchfluss bei maximaler Überfallhöhe
			(P704) in Zeit- (P707) und Mengeneinhei-
			ten (P706) ein.
P710	Abmessung "A"	0	Geben Sie die gefragte Abmessung in Ein-
			heiten (P104) ein.
P711	Abmessung "B"	0	Geben Sie die gefragte Abmessung in Ein-
			heiten (P104) ein.
P712	Abmessung "C"	0	Geben Sie die gefragte Abmessung in Ein-
			heiten (P104) ein.
P713	Abmessung "D"	0	Geben Sie die gefragte Abmessung in Ein-
			heiten (P104) ein.
P717	Exponent	Hängt von der gewähl-	Wenn verfügbar setzt der NivuMaster hier
		ten Messeinrichtung ab	den voreingestellten Exponenten für die
			gewählte Messeinrichtung automatisch ein.
			Dies kann jedoch geändert werden.
			Ist P700 = 7 (Andere), geben Sie hier den
			Exponenten ein, der vom Hersteller der
			Messeinrichtung vorgegeben wird.
P718	K-Faktor		Geben Sie hier den K-Faktor ein, der vom
			Hersteller der Messeinrichtung vorgegeben
			wird.

Nr.	Parameter	Werkseinstellung	Beschreibung
P213	Relais 1 EIN/AUS	applikationsabhängig	Einstellen des benötigten Alarmschaltpunk-
/214			tes.
P223	Relais 2 EIN/AUS	applikationsabhängig	Einstellen des benötigten Alarmschaltpunk-
/ 224			tes.
P233	Relais 3 EIN/AUS	applikationsabhängig	Einstellen des benötigten Alarmschaltpunk-
/ 234			tes.
P708	Kommastellen Durch-	2	Einstellen der für die Durchflussdarstellung
	fluss		benötigten Kommastellen.
P709	Minimalmengen-	5,00 %	Eingabe des minimalen Durchflusses, der
	Unterdrückung		zum Summenzähler hinzugezählt werden
			soll in Prozent.
P830	Bereich mA-Ausgang	2 = 4 bis 20 mA	Einstellung des mA-Ausgangsbereichs:
			0 = Aus, 1 = 0 bis 20 mA, 2 = 4 bis 20 mA,
			3 = 20 bis 0 mA, 4 = 20 bis 4 mA.
P870	Dämpfung steigend	10 m/min	Eingabe der Dämpfung des steigenden
			Füllstands in Einheiten/Min.
P871	Dämpfung fallend	10 m/min	Eingabe der Dämpfung des fallenden Füll-
			stands in Einheiten/Min.

In der folgenden Tabelle sind die ab Werk voreingestellten Alarmschaltpunkte in Prozent vom Messbereich angegeben:

Relaisfunktion	Alarmart	Einschaltpunkt	Ausschaltpunkt
Alarm	MaxMax.	90 %	85 %
Alarm	Max.	85 %	80 %
Alarm	Min.	10 %	15 %
Alarm	MinMin.	5 %	10 %

13.3 Exponentielle Messeinrichtungen

Exponent Typ		Exponent
Gestauchtes Rechteckwehr		1,50
Cipolletti-Wehr (trapezför- mig)		1,50
Venturi-Gerinne		1,50
Parshall-Gerinne		Werkseinstellung = 1,55. Dieser Wert kann mit P717 beliebig eingestellt werden.
Leopald Lagco-Gerinne		1,55
V-Wehr		2,50
Andere	Vom Hersteller vorgegeben	Wert kann mit P717 beliebig eingestellt werden.

13.3.1 Messstelle

Der Sensor muss mindestens um den Wert der Nahbereichsausblendung (P107) über der maximalen Überfallhöhe (P704) positioniert werden. In gestauchten Rechteckwehren, trapezförmigen Wehren und V-Wehren muss der Überfall in einer Entfernung von mindestens 3x der maximalen Überfallhöhe ab Wehrplatte in Strömungsrichtung gemessen werden. Dies stellt sicher, dass die Oberfläche des Mediums nicht durch Verwirbelung oder Ähnliches beeinflusst wird.

Abb. 13-1 exponentielles Wehr

Beim Venturi-Gerinne sollte der Messpunkt 150mm ab dem Beginn der Reduzierstrecke in Strömungsrichtung liegen; bei einem Parshall-Gerinne in einer Entfernung von 2/3 der Reduzierstrecke gemessen ab der Einschnürung in Strömungsrichtung.

Abb. 13-3 Parshall-Gerinne

Im Falle eines Leopald Lagco-Gerinnes wird der Überfall ebenfalls an einem Punkt in Strömungsrichtung gemessen. Die Entfernungen ab der Reduzierstrecke sind wie folgt:

Durchmesser Gerinne in mm	Position Messpunkt mm
100 - 305	25
380	32
455	38
530	44
610	51
760	64
915	76
1065	89
1220	102
1370	114
1520	127
1675	140
1830	152

- 1 Sensor (Mindestblockabstand in P107)
- 2 Einengung
- 3 Aufweitung
- 4 Verengung

Abb. 13-4 Leopald Lagco-Gerinne

Wenn das Gerinne keiner der vorgenannten Spezifikationen entspricht, erkundigen Sie sich bitte beim Hersteller nach der optimalen Position des Messpunktes. Beachten Sie dabei allerdings, dass die Messung nicht durch Verwirbelung oder andere Störeinflüssen beeinträchtigt wird.

13.3.2 Berechnungen

Absolut

Ist in P702 eine 1 eingetragen (absolute Berechnung), wird der Durchfluss nach der folgenden Formel berechnet: $q = Kh^x$

Hierbei gilt:	q	= Durchfluss
	K	= konstanter Faktor (P718)
	h	= Überfall
	х	= Exponent (P717)

Proportional

Ist in P702 eine 2 eingetragen (proportionale Berechnung), wird der Durchfluss nach der folgenden Formel berechnet: $q = q_{cal} (h/h_{cal})^x$

Hierbei gilt:	q	= Durchfluss
	q _{cal}	= Durchfluss bei maximaler Überfallhöhe (705)
	h	= Überfall
	h _{cal}	= maximale Überfallhöhe
	х	= Exponent

13.3.3 Beispiel 1: V - Wehr

Grundparameter

Anw	/endung		_
	Betriebs	sparameter	
		P100 = 5	Mengenmessung
		P101 = 2	Sensor Typ P-06
		P102 = 1	Flüssigkeit
	Abme	ssungen	
		P104 = 2	Maßeinheit cm
		P105 = 150	Abstand Sensor zum Beckenboden 150 cm
		P106 = 120	Max. Füllstand
		P107 = 30	Nahausblendung 30 cm
		P108 = 20 %	Endbereichserweiterung 20 %

Menge	enmessung		
	Auswahl	Applikation	
		P700 = 5	Spezielle Anwendungen
		P701 = 3	V-Wehr
		P702 = 2	Berechnungsformel $Q = Q_{max} \cdot (h : hmax)^x$
		P703 = 50	Beginn des Überfalls bezogen auf Nullpunkt (P105) = Wehrspitze
		P704 = 30	Wehrhöhe h _{max} = 30 cm
		P705 =	Maximale Überfallhöhe Q _{max} wird vom MivuMaster
		P706 = 1	Einheit der Menge (Q) = Liter
		P707 = 1	Einheit der Zeit (t) = Sekunden
		P708 = 0	Kommastellen beim Durchflusswert
		P709 = 2 %	Nullpunktunterdrückung

Messung, wenn h_{max} und Q_{max} bekannt sind

Menge	enmessung		
	Auswahl	Applikation	
		P700 = 1	Exponential
		P701 = 6	V-Wehr
		P702 = 2	Berechnungsformel $Q = Q_{max} \cdot (h : hmax)^{x}$
		P703 = 50	Beginn des Überfalls bezogen auf Nullpunkt (P105)
		P704 = 30	Wehrhöhe h _{max} = 30 cm
		P705 = 70	Maximale Überfallhöhe Q _{max} = 70 Liter
		P706 = 1	Einheit der Menge (Q) = Liter
		P707 = 1	Einheit der Zeit (t) = Sekunden
		P708 = 0	Kommastellen beim Durchflusswert
		P709 = 2 %	Nullpunktunterdrückung
	Abme	ssungen	
		P717 = 2,5	automatisch eingestellt

13.4 Venturi

13.4.1 Messstelle

Der Sensor muss mindestens um den Wert der Nahbereichsausblendung (P107) über der maximalen Überfallhöhe (P704) positioniert werden.

In Rechteckkanälen und Kanälen mit U-Profil muss der Überfall in einer Entfernung von mindestens 3-4x der maximalen Überfallhöhe ab Beginn der Reduzierstrecke in Strömungsrichtung gemessen werden. Dies stellt sicher, dass die Oberfläche des Mediums nicht durch Verwirbelung oder Ähnliches beeinflusst wird (siehe Abb. 13-6).

<u>Venturimessung</u>

		-	
Anwe	ndung		
Betriebsparameter			
		P100 = 2	Füllstand in Hauptanzeige
		P101 = 2	Sensor Typ P-06
		P102 = 1	Flüssigkeit
	Abmes	sungen	
		P104 = 2	Maßeinheit cm
		P105 = 150	Abstand Sensor zum Nullpunkt 150 cm
		P106 = 50	Füllstand bei max. Durchfluss
		P107 = 30	Nahausblendung 30 cm
		P108 = 20 %	Endbereichserweiterung 20 %
Mengeni	messung		
	Auswahl A	Applikation	
		D700 4	Denselation (iber sins Francisco tistérrelation
		P700 = 1	
		P701 = 3	
		P702 = 2	Berechnungsformel $Q = Q_{max} \bullet (h : hmax)^{-1}$
		P704 = 50	Max. Füllstand im Venturigerinne = 50 cm
		P705 - 200	Max Durchfluss des Venturigerinnes – 200 l/s
		P706 - 1	Finheit der Menge (Ω) – Liter
		P707 = 1	Einheit der Zeit $(t) = $ Sekunden
		P708 - 0	Kommastellen beim Durchflusswert
		P709 - 5	Nullounktunterdrückung
	Abmes	sungen	
	7.6.1103	Sangen	Exponent wird automatisch bei 701 = 3
		P717 = 1,5	auf 1,5 eingestellt

13.4.2 Berechnungen

Absolut

Rechteckkanal

Ist in P702 eine 1 eingetragen (absolute Berechnung), wird der Durchfluss nach der folgenden Formel berechnet: $q = (2/3)^{1.5} x gn^{0.5} x Cs x Cv x Cd x b x h^{1.5}$

Hierbei gilt:	q	= Durchfluss
	gn	= Schwerkraftbeschleunigung
	Cs	= Formkoeffizient berechnet vom NivuMaster P724
	Cv	= Geschwindigkeitskoeffizient berechnet vom
		NivuMaster P721
	Cd	= Abflusskoeffizient berechnet vom NivuMaster P722
	b	= Breite Einschnürung P711
	h	= Überfall

U-Profil

Ist in P702 eine 1 eingetragen (absolute Berechnung), wird der Durchfluss nach der folgenden Formel berechnet: $q = (2/3)^{1.5} x gn^{0.5} x Cu x Cv x Cd x b x h^{1.5}$

Hierbei gilt:	q	= Durchfluss
	gn	= Schwerkraftbeschleunigung
	Cu	= Formkoeffizient berechnet vom NivuMaster P724
	Cv	= Geschwindigkeitskoeffizient berechnet vom
		NivuMaster P721
	Cd	= Abflusskoeffizient berechnet vom NivuMaster P722
	b	= Breite Einschnürung P711
	h	= Überfall

Proportional

Rechteckkanal

Ist in P702 eine 2 eingetragen (proportionale Berechnung), wird der Durchfluss nach der folgenden Formel berechnet: $q = q_{cal} \times Cv/Cv_{cal} \times Cd/Cd_{cal} \times (h/h_{cal})^{1,5}$

Hierbei gilt:	q q _{cal}	= Durchfluss = Durchfluss bei maximaler Überfallhöhe P705
	Cv	 Geschwindigkeitskoeffizient berechnet vom
		NivuMaster P721
	Cv_{cal}	 Geschwindigkeitskoeffizient bei maximaler Überfallhöhe
	Cd	= Abflusskoeffizient berechnet vom NivuMaster P722
	Cd_{cal}	= Abflusskoeffizient bei maximaler Überfallhöhe
	h	= Überfall
	h _{cal}	= maximale Überfallhöhe P704

U-Profil

Ist in P702 eine 2 eingetragen (proportionale Berechnung), wird der Durchfluss nach der folgenden Formel berechnet: $q = q_{cal} \times Cv/Cv_{cal} \times Cd/Cd_{cal} \times Cu/Cu_{cal} \times (h/h_{cal})^{1.5}$

Hierbei gilt:	q	= Durchfluss
	q _{cal}	= Durchfluss bei maximaler Überfallhöhe P705
	Cv	= Geschwindigkeitskoeffizient berechnet vom
		NivuMaster P721
	Cv_{cal}	= Geschwindigkeitskoeffizient bei maximaler
		Überfallhöhe
	Cd	= Abflusskoeffizient berechnet vom NivuMaster P722
	Cd_{cal}	= Abflusskoeffizient bei maximaler Überfallhöhe
	Cu	= Formkoeffizient P724
	Cu _{cal}	= Formkoeffizient bei maximaler Überfallhöhe
	h	= Überfall
	h _{cal}	= maximale Überfallhöhe P704

13.4.3 Beispiel 2: Einschnürung mit U-Profil

Im folgenden Beispiel soll der Durchfluss in einem Gerinne mit U-Profil- Einschnürung ohne darin befindliche Erhebungen gemessen werden. Es wird die absolute Berechnung verwendet und Relais 1 soll eine Alarmmeldung bei niedrigem Durchfluss ausgeben. Der Durchfluss soll in m³ pro Stunde angezeigt werden. Der Summenzähler muss den Durchfluss ebenfalls in m³ aufzeichnen und der rücksetzbare Summenzähler soll im normalen Betriebsmodus angezeigt werden.

Der Abstand zwischen Sensorunterkante und Gerinnenullpunkt (P105) beträgt 1m und die maximale Überfallhöhe (P704) liegt bei 0,4 m.

Die Gerinneabmessungen sind:

Näherungswert Kanaldurchmesser, (Abmessung) "A" P710	= 0,7 m
Durchmesser Einschnürung (Abmessung "B") P711	= 0,5 m
Länge Einschnürung (Abmessung "C") P712	= 1,0 m

Bei der Programmierung dieses Beispiels gehen Sie folgendermaßen vor: Gehen Sie in den Programmode und geben Sie das Passwort 1997 ein. Mit der rechten Pfeiltaste wählen Sie das Schnelleinrichtungsmenü und drücken die E-Taste. Dort geben Sie je nach Aufforderung die erforderlichen Daten ein und bestätigen ebenfalls mit der E-Taste.

Abfrage	Eingabe
Messeinrichtung Typ	2 = Venturi
Gerinnetyp	3 = U-Profil
Berechnungsmethode	1 = Absolut
Anzahl Alarme	1 = 1
Alarmart 1	2 = Min.
Alarm 1	1 = Relais 1
Sensor	1 = PM 3
Mengeneinheit	$2 = m^3$
Zeiteinheit	3 = pro Stunde
Messeinheit	1 = Meter
Leerstand	1,000 m
Minimale Überfallhöhe	0,000 m
Maximale Überfallhöhe	0,400 m
Summenzähler Ein	1 = Ein
Summenzähler (rücksetzbar)	1 = Ja
Faktor Summenzähler	7 = 1000
Näherungswert Durchmesser	0,7m
Durchmesser Einschnürung	0,5m
Länge Einschnürung	1,0m

Die Programmierung ist nun vollständig und das Gerät kann in den Run-Mode zurückgesetzt werden. Drücken Sie die C-Taste, bis auf dem Display "Betrieb?" steht, danach mit der E-Taste bestätigen.

Die Relaisschaltpunkte können angepasst werden wenn sie den Anforderungen der Applikation nicht genau entsprechen. Dies kann ausgeführt werden, wenn auf dem Display "Für weitere Optionen drücken Sie Enter" erscheint und

Seite 162

Sie entsprechend Enter gedrückt haben. Nun können die Schaltpunkte wie benötigt eingegeben werden. Alternativ kann auf die Schaltpunkte über das Menüsystem oder aber direkt über die entsprechende Parameternummer zugegriffen werden.

13.5 Dünnwandiges Plattenwehr

13.5.1 Messstelle

Der Sensor muss mindestens um den Wert der Nahbereichsausblendung (P107) über der maximalen Überfallhöhe (P704) positioniert werden.

Bei Rechteck- und V-Wehren muss der Überfall in einer Entfernung von mindestens 4-5x der maximalen Überfallhöhe ab Wehrplatte in Strömungsrichtung gemessen werden. Dies stellt sicher, dass die Oberfläche des Mediums nicht durch Verwirbelung oder Ähnliches beeinflusst wird (siehe Abb. 13-7).

Abb. 13-7 Wehr (BS3680)

13.5.2 Berechnungen

Absolut

Rechteckwehr

Ist in P702 eine 1 eingetragen (absolute Berechnung), wird der Durchfluss nach der folgenden Formel berechnet: $q = Ce \times 2/3 \times (2 \times gn)^{0.5} \times be \times he^{1.5}$

Hierbei gilt:	q	= Durchfluss
	Ce	= Abflusskoeffizient berechnet vom NivuMaster
		P723
	gn	= Schwerkraftbeschleunigung
	be	= effektiver N\u00e4herungswert, wobei
		b = Näherungswert Breite (Abmessung "A") P710
	he	= effektiver Überfall

V-Wehr

Ist in P702 eine 1 eingetragen (absolute Berechnung), wird der Durchfluss nach der folgenden Formel berechnet: $q = Ce \times 8/15 \times tan(theta/2) \times (2gn)^{0.5} \times h^{2.5}$

Hierbei gilt:	q	= Durchfluss
	Ce	= Abflusskoeffizient berechnet vom NivuMaster
		P723
	theta	= Winkel V-Wehr
	gn	= Schwerkraftbeschleunigung
	h	= Überfall

Der NivuMaster übernimmt den Winkel entsprechend des voreingestellten Wehrs: 90°, 53°8' oder 28°4'.

Proportional

Rechteckwehr

Ist in P702 eine 2 eingetragen (proportionale Berechnung), wird der Durchfluss nach der folgenden Formel berechnet: $q = q_{cal} x Ce/Ce_{cal} x (he/he_{cal})^{1,5}$

Hierbei gilt:	q	= Durchfluss
	q _{cal}	= Durchfluss bei maximaler Überfallhöhe P705
	Ce	= Abflusskoeffizient berechnet vom NivuMaster
		P723
	Ce _{cal}	= Abflusskoeffizient bei maximaler Überfallhöhe
	gn	= Schwerkraftbeschleunigung
	he	= effektiver Überfall
	he _{cal}	= effektiver Überfall bei maximaler Überfallhöhe

V-Wehr

Ist in P702 eine 1 eingetragen (absolute Berechnung), wird der Durchfluss nach der folgenden Formel berechnet: $q = q_{cal} \times Ce(h)/Ce(h_{cal}) \times (h/h_{cal})^{2.5}$

Hierbei gilt:	q	= Durchfluss
	q _{cal}	= Durchfluss bei maximaler Überfallhöhe P705
	Ce(h)	= Abflusskoeffizient f ür Überfall
	Ce(h _{cal})	= Abflusskoeffizient für maximale Überfallhöhe
	h	= Überfall
	h _{cal}	= maximale Überfallhöhe P704

13.5.3 Beispiel 3: Rechteckwehr

Im folgenden Beispiel soll der Durchfluss in einem Rechteckwehr gemessen werden. Es wird die absolute Berechnung verwendet und Relais 3 soll eine Alarmmeldung bei hohem Durchfluss ausgeben. Der Durchfluss soll in Liter pro Minute angezeigt werden. Der Summenzähler muss den Durchfluss in m³ aufzeichnen und der rücksetzbare Summenzähler soll im normalen Betriebsmodus angezeigt werden.

Der Abstand zwischen Sensorunterkante und Gerinnenullpunkt (P105) beträgt 1 m und die maximale Überfallhöhe (P704) liegt bei 0,4 m.

Die Gerinneabmessungen sind:

Näherungswert Kanaldurchmesser (Abmessung "A") P710	= 0,5m
Breite Wehrkrone (Abmessung "B") P711	= 0,3m
Höhe Wehrkrone (Abmessung "C") P712	= 0,3m

Bei der Programmierung dieses Beispiels gehen Sie folgendermaßen vor: Gehen Sie in den Programmode und geben Sie das Passwort 1997 ein. Mit der rechten Pfeiltaste wählen Sie das Schnelleinrichtungsmenü und drücken die E-Taste. Dort geben Sie je nach Aufforderung die erforderlichen Daten ein und bestätigen ebenfalls mit der E-Taste.

Abfrage	Eingabe
Messeinrichtung Typ	3 = Wehr
Gerinnetyp	1 = Rechteckig
Berechnungsmethode	1 = Absolut
Anzahl Alarme	1 = 1
Alarmart 1	1 = Max.
Alarm 1	3 = Relais 3
Sensor	1 = PM 3
Mengeneinheit	1 = Liter
Zeiteinheit	1 = pro Minute
Messeinheit	1 = Meter
Leerstand	1,000 m
Minimale Überfallhöhe	0,000 m
Maximale Überfallhöhe	0,400 m
Summenzähler Ein	1 = Ein
Summenzähler (rücksetzbar)	1 = Ja
Faktor Summenzähler	7 = 1000
Näherungswert Durchmesser (Abmes-	0,5m
sung "A")	
Breite Wehrkrone (Abmessung "B")	0,3m
Höhe Wehrkrone (Abmessung "C")	0,3m

Die Programmierung ist nun vollständig und das Gerät kann in den Run-Mode zurückgesetzt werden. Drücken Sie die C-Taste, bis auf dem Display "Betrieb?" steht, danach mit der E-Taste bestätigen.

Die Relaisschaltpunkte können angepasst werden wenn sie den Anforderungen der Applikation nicht genau entsprechen. Dies kann ausgeführt werden, wenn auf dem Display "Für weitere Optionen drücken Sie Enter" erscheint und Sie entsprechend Enter gedrückt haben. Nun können die Schaltpunkte wie benötigt eingegeben werden. Alternativ kann auf die Schaltpunkte über das Menüsystem oder aber direkt über die entsprechende Parameternummer zugegriffen werden.

!

13.6 Q/h-Kennlinie

Anwendung		_
Betriebs	parameter	
	P100 = 5	Mengenmessung
	P101 = 2	Sensor Typ P-06
	P102 = 1	Flüssigkeit
Abmes	sungen	
	P104 = 2	Maßeinheit cm
	P105 = 300	Abstand Sensor zum Beckenboden 300 cm
	P106 = 270	Max. Füllstand
	P107 = 30	Nahausblendung 30 cm
	P108 = 20 %	Endbereichserweiterung 20 %
[1	
Mengenmessung		1
Auswahl	Applikation	-
	P700 = 6	Universal
	P701 = 1	Linearisierung über Interpolierung der Stützpunkte
	P702 =	Wird bei Stützpunktfunktion nicht benötigt
	D702 200	Beginn des Überfalls bezogen auf
	F703 = 200	Hier den Wert des letzten Höhenstütz-
	P704 =	punktes nochmals eingeben.
		Hier den Wert des letzten Mengenstütz-
	P705 =	punktes nochmals eingeben.
	P706 = 1	Einheit der Menge (Q) = Liter
	P707 = 1	Einheit der Zeit (t) = Sekunden
	P708 = 0	Kommastellen beim Durchflusswert
	P709 = 5 %	Nullpunktunterdrückung
		1
Stütz	punkte	
	P730 = 0	Höhenstützpunkt #1 muss 0 sein.
	P731 = 0	Mengenstützpunkt #1 muss 0 sein.
	P732 = x	Höhenstützpunkt #2
	P733 = x	Mengenstützpunkt #2
	P734-P749	
	B702	Hohenstützpunkt #32
	F 192 =	(max. einzugebender Honenstutzpunkt) Mengenstützpunkt #32
	P793 =	(max. einzugebender Höhenstützpunkt)

Der zuletzt programmierte Stützpunkt muss den Werten in P704 und P705 entsprechen.

Der maximal angezeigte Durchfluss entspricht dem zuletzt eingegebenen Mengenstützpunkt.

13.7 Optionen bei der Mengenmessung

Rückstellbaren Summierer in der Hilfsanzeige anzeigen

Anz	eige		
		Statusa	anzeige
			D816 - 1

1 Summierer im Betriebsmode in der Anzeige darstellen.

Freigabe der beiden Zähler für Summierung

= 1 Summierer aktivieren (0 = Funktion gesperrt)

Rückstellbaren Summierer auf 0 zurücksetzen

Zum Rücksetzen des Tageszählers während des Betriebes müssen nachfolgende Tasten gedrückt werden.

drücken bis in der Anzeige der Zählerstand "Tot R x x x x x" erscheint

0

Σ

drücken um Zählerstand auf "0" zu setzen.

E Die Rückfrage des NivuMaster "Enter wenn o.k." mit der E-Taste bestätigen. Der Tageszähler ist auf 0 zurückgesetzt.

Mengenimpuls für die Durchflussmessung

Relaisprog	rammierung		
	Relais	s Nr. 1	
		P210 = 4	Sonstige Alarmfunktion
		P211 = 2	Summierer
		P212 = 1	Alarmanzeige aktivieren
		P213 = 1"	Impulseinheiten ausgegeben werden
		P214 = 1	Schaltpunkt 2: Impulsdauer in Sekunden

" = zeigt der NivuMaster die Menge in l/s an (P706=1 / P707=1), und ist der Impulsfaktor des internen Summierers auf Lx1000 eingestellt (P823=7), so zieht das Relais 1x alle Lx1000 l/s (=m³) an.

13.8 Geschwindigkeitsbereich

Die Durchflussberechnung mittels des Geschwindigkeitsbereichs ist nur möglich, wenn am optionalen Stromeingang ein durchflussproportionales Signal von einem Geschwindigkeitssensor verfügbar ist.

13.8.1 Messstelle

Der Sensor muss mindestens um den Wert der Nahbereichsausblendung (P107) über der maximalen Überfallhöhe (P704) positioniert werden.

Bei allen entsprechenden Applikationen muss der Messpunkt so gewählt werden, dass die Oberfläche des Mediums nicht durch Verwirbelung oder Ähnliches beeinflusst wird (siehe Abb. 13-8 bis Abb. 13-12).

3 Leerabstand (P105)

Abb. 13-9 U-Profil

Abb. 13-10 Rechteckkanal

Menge

13.8.2 Berechnungen

Absolut

Rechteckkanal und U-Profil: ist in P702 eine 1 eingetragen (absolute Berechnung), wird der Durchfluss nach der folgenden Formel berechnet: q = v x b x h

Hierbei gilt:	
---------------	--

- = Durchfluss
- = Geschwindigkeit
- b
- = Kanalbreite/-durchmesser (Abmessung "A") P710
- h

q

v

= Überfall

- 1 Sensor -min. Abstand bei max. Füllung (P107)
- 2 Kanalbreite oben (P710)
- 3 Leerabstand (P105)
- 4 Gerinnetiefe (P712)
- 5 Kanalbreite unten (P711)

Abb. 13-11 Trapezförmiger Kanal

Ist in P702 eine 1 eingetragen (absolute Berechnung), wird der Durchfluss nach der folgenden Formel berechnet: q = vh (b + mh)

Hierbei gilt:	q	= Durchfluss
	V	= Geschwindigkeit
	h	= Überfall
	b	= Kanalbreite unten (Abmessung "B") P711
	m	= Seitenneigung berechnet aus
	m	= (B – b)/d wobei B = Kanalbreite oben
		(Abmessung "A") P710
	b	= Kanalbreite unten (Abmessung "B") P711
	d	= Gerinnetiefe (Abmessung "C") P712

Abb. 13-12 Rundprofil

Ist in P702 eine 1 eingetragen (absolute Berechnung), wird der Durchfluss nach der folgenden Formel berechnet: q = va(h)

Hierbei gilt:	q	= Durchfluss
	V	= Geschwindigkeit
	a(h)	= Bereich bei Überfall

13.9 Sondereinrichtungen

13.9.1 Messstelle

Der Sensor muss mindestens um den Wert der Nahbereichsausblendung (P107) über der maximalen Überfallhöhe (P704) positioniert werden.

In einem Palmer-Bowlus-Gerinne sollte sich der Überfallmesspunkt mindestens den halben Wert von Abmessung "A" P710 in Strömungsrichtung befinden.

Palmer-Bowlus-Gerinne sind in Deutschland nicht üblich

Bei einem H-Gerinne ist die Messung an einem Punkt gegen die Strömungsrichtung zu installieren. Die Entfernungen ab Gerinnebeginn sind wie folgt:

- 1 Sensor -min. Abstand bei max. Füllung (P107)
- 2 Messstelle (siehe Tabelle)

Abb. 13-13	Messstelle am	Beispiel eines	Palmer-Bowlus-Gerinne
------------	---------------	-----------------------	-----------------------

Gerinnegröße Abmessung "A" P710 cm	Position der Messstelle cm
15,25	4,7
23,00	6,7
30,05	9,1
45,70	13,5
61,00	17,9
76,20	22,5
91,45	27,2
137,15	40,5

Bei V-Wehren muss der Überfall in einer Entfernung von mindestens 3x der maximalen Überfallhöhe ab Wehrplatte in Strömungsrichtung gemessen werden. Dies stellt sicher, dass die Oberfläche des Mediums nicht durch Verwirbelung oder Ähnliches beeinflusst wird. Für nähere Erläuterungen siehe "Exponentielle Messeinrichtungen".

13.9.2 Berechnungen

Absolut

Palmer-Bowlus- und H-Gerinne Ist in P702 eine 1 eingetragen (absolute Berechnung), wird der Durchfluss nach

der folgenden Formel berechnet: q = f(h)

Hierbei gilt: q = Durchfluss f = 1/8 ° des polynomisch aufgelösten h-Wertes (Überfall)

V-Wehr

Ist in P702 eine 1 eingetragen (absolute Berechnung), wird der Durchfluss nach der folgenden Formel berechnet: $q = Ce \times 8/15 \tan (theta/2) (2gn)^{0.5} (h = kh)^{5/2}$

Hierbei gilt:	q	= Durchfluss
	Ce	= Abflusskoeffizient berechnet vom NivuMaster
		P723
	theta	= Öffnungswinkel V-Wehr
	gn	= Schwerkraftbeschleunigung
	h	= Überfall
	kh	= kompensierter Überfall

Proportional

Palmer-Bowlus- und H-Gerinne

Ist in P702 eine 2 eingetragen (proportionale Berechnung), wird der Durchfluss nach der folgenden Formel berechnet: $q = q_{cal} \times f(h)/f(h_{cal})$

Hierbei gilt:	q	= Durchfluss
	q _{cal}	= Durchfluss bei maximaler Überfallhöhe P705
	f(h)	= polynomisch aufgelöster Wert von h (Überfall)
	f(h _{cal})	= polynomisch aufgelöster Wert von h _{cal}
		(maximale Überfallhöhe)

V-Wehr

Ist in P702 eine 2 eingetragen (proportionale Berechnung), wird der Durchfluss nach der folgenden Formel berechnet: $q = q_{cal}(h + kh/h_{cal} + kh)^{2,5}$

Hierbei gilt:	q	= Durchfluss
	q _{cal}	= Durchfluss bei maximaler Überfallhöhe P705
	h	= Überfall
	kh	= kompensierter Überfall

13.10 Universelle Berechnungen

13.10.1 Messstelle

Der Sensor muss mindestens um den Wert der Nahbereichsausblendung (P107) über der maximalen Überfallhöhe (P704) positioniert werden. Auch bei universellen Berechnungen gilt: bitte Messstelle so wählen, dass die Oberfläche des Messmediums nicht durch Verwirbelungen oder Ähnliches beeinflusst wird.

13.10.2 Berechnungen

Absolut

Universeller Überfall gegen Durchfluss Ist in P702 eine 1 eingetragen (absolute Berechnung), wird der Durchfluss nach der folgenden Formel berechnet: q = q(h)

Hierbei gilt: q = Durchfluss f = Durchfluss bei Überfall

Die gewünschte Anzahl von Stützpunkten (P730 – P793) wird paarweise als Überfall- und entsprechender Durchflusswert eingegeben. Es werden mindestens 2 Paar Stützpunkte benötigt.

13.11 Übersicht Parameter

Im folgenden Abschnitt werden alle verfügbaren Parameter des NivuMaster in der Reihenfolge ihres Erscheinens im Menü beschrieben.

13.11.1 Diagramm Menüsystem

Untenstehend finden Sie Übersichten, welche die verschiedenen Teile des Menüsystems beschreiben.

Hauptmenü

Applikation

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

Relais

Infodaten

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

Mengenmessung

Menge

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

Anzeige

mA-Ausgang

Kompensation

Stabilität

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

Echoverarbeitung

System

Menge

Gerätekommunikation

Test / Simulation

13.12 Parameterliste

Dieser Abschnitt beschreibt detailliert alle verfügbaren Parameter, wenn der NivuMaster als Durchflussmessgerät konfiguriert ist. Jeder Parameter kann im Betriebsmode durch Drücken des Tastenkürzels "n" auf Werkseinstellung zurückgesetzt werden.

13.12.1 Applikationsparameter

Betrieb

P100 Betriebsart

Mit diesem Parameter kann die Betriebsart wie folgt eingestellt werden:

Option	Beschreibung
1 = Abstand (Werkseinstellung)	Display zeigt den Abstand zwischen Sen-
	defläche Sensor und Oberfläche Mess-
	medium
2 = Füllstand	Display zeigt den Füllstand im Behälter
3 = Leerraum	Display zeigt den Leerraum im Behälter
4 = Abschlagshöhe	Display zeigt die Höhe des Abschlags
5 = Abschlagsmenge	Display zeigt die momentane Abschlags-
	menge

P101 Sensor

Hier kann der verwendete Sensor angegeben werden.

Option	Beschreibung
1 = PM 3 (Werkseinstellung)	PM3 Sensor, Messbereich 0,07 bis 2,5m
2 = P06	P06 Sensor, Messbereich 0,3 bis 6,0m
3 = P10	P10 Sensor, Messbereich 0,3 bis 10,0m
4 = P15	P15 Sensor, Messbereich 0,5 bis 15,0m
7 = PS6	PS6 Sensor, Messbereich 0,2 bis 6,0m

P102 Material

Mit diesem Parameter wird das zu messende Medium festgelegt.

Option	Beschreibung
1 = Flüssigkeit	Für Flüssigkeiten oder Feststoffe mit ebe-
(Werkseinstellung)	ner Oberfläche
2 = Schüttgut	Für an- bzw. aufgehäufte Feststoffe und
	Materialien

Maße

P104 Messeinheiten

Hier werden die zu verwendenden Messeinheiten für Display und Programmierung definiert.

Option	Beschreibung
1 = Meter (Werkseinstellung)	Alle Messeinheiten in m
2 = Zentimeter	Alle Messeinheiten in cm
3 = Millimeter	Alle Messeinheiten in mm
4 = Fuß	Alle Messeinheiten in ft
5 = Zoll	Alle Messeinheiten in in.

P105 Nullpunkt

Dieser Parameter sollte auf den Wert in Einheiten (P104) des maximalen Abstands zwischen der Sensorsendefläche und dem Leerstand eingestellt werden. Da dieser Wert den Messbereich beeinflusst (siehe wichtige Information unten), muss er vor der Einstellung des Messbereichs gesetzt werden.

Wenn ein PM3 Sensor benutzt wird, muss der Abstand zwischen dem Ende des Sensortrichters und dem Nullpunkt in Messeinheiten (P104) gemessen werden.

Bei Änderung des Nullpunkts P105 kann auch der Wert für den Messbereich neu berechnet werden um den Nullpunkt P105 minus Nahausblendung P107 und Relaisschaltpunkten auszugleichen. Diese bleiben dann auf demselben Prozentwert des Leerstands wie vor der Änderung des Nullpunkts. Wenn Sie bei der Abfrage "Spanne neu berechnen?" 1 eingeben und mit der E-Taste bestätigen, wird der Messbereich neu berechnet. Jede andere Eingabe belässt die Messspanne auf ihrem ursprünglichen Wert. Es folgt die Abfrage "Schaltpunkte neu berechnen?" Wenn Sie hier ebenfalls 1 eingeben und mit der E-Taste bestätigen, werden die Schaltpunkte neu berechnet; andere Eingaben verändern die Ursprungswerte nicht.

P106 Messpanne

Hier sollte der maximale Abstand zwischen Nullpunkt P105 und maximalem Füllstand eingetragen sein. Dieser Wert wird bei der Einstellung des Nullpunkts automatisch auf einen Wert gleich Nullpunkt minus Nahausblendung P107 gestellt.

P107 Nahausblendung

Dieser Parameter bezeichnet den nicht messbaren Bereich ab der Sendefläche des Sensors und ist auf einen Minimalwert abhängig vom verwendeten Sensor P101 eingestellt. Der Wert sollte nicht niedriger als in der folgenden Tabelle eingestellt werden. Eine höhere Einstellung jedoch ist möglich um z.B. Störkanten oder andere verbauten Hindernisse auszublenden.

Sensor		Nahausblendung
P101 = 1	PM3	Voreingestellte Nahausblendung = 0,0m
P101 = 2	P06	Voreingestellte Nahausblendung = 0,3m
P101 = 3	P10	Voreingestellte Nahausblendung = 0,3m
P101 = 4	P15	Voreingestellte Nahausblendung = 0,5m
P101 = 7	PS6	Voreingestellte Nahausblendung = 0,2m
P101 = 0	mA Eingang opt. *	

P108 Enderweiterung

Dieser Wert bestimmt den Bereich, in dem über den Nullpunkt P105 hinaus gemessen werden kann. Eingabe in % vom Nullpunkt. Werkseinstellung = 20 %. Sollte die Oberfläche des Messmediums einen Wert jenseits des Nullpunkts P105 erreichen, kann die Enderweiterung auf bis zu 100 % des Nullpunkts erweitert werden. Dieser Parameter wird immer als Prozentwert angegeben.

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

13.12.2 mA-Eingang* (nur 5-Relais)

Der 4-20 mA (Hilfs-)Eingang ist optional erhältlich (bitte kontaktieren Sie NIVUS) und kann als Ersatz für den Sensor benutzt werden, falls bei einer Applikation kein Ultraschall- oder Radarsensor verwendet werden kann.

P119* mA Zustand

Wenn P101 Sensor = 0 (Hilfseingang)

Hier wird der momentane Zustand des Hilfseingangs (falls gewählt) angezeigt.

Option	Beschreibung
0 = mA OK	mA-Eingang funktioniert korrekt
1 = mA offen	am mA-Eingang liegt kein Signal an
2 = mA Kurzschluss	mA-Eingang zeigt Fehler an

P120* mA bei Min.

Falls der mA-Eingang anstatt eines Ultraschall- oder Radarsensors benutzt wird, wird hier eingestellt wie der Leerstand repräsentiert werden soll. Werkseinstellung = 4mA.

P121* mA bei Max.

Falls der mA-Eingang anstatt eines Ultraschall- oder Radarsensors benutzt wird, wird hier eingestellt wie Maximalfüllung repräsentiert werden soll. Werkseinstellung = 20 mA.

P122* Füllstand bei Min.

Eingabe des Absolutwertes beim Nullpunkt einer angeschlossenen Füllstandssonde (z.B. Drucksonde).

P123* Füllstand bei Max.

Eingabe des Absolutwertes beim Vollpunkt einer angeschlossenen Füllstandssonde (z.B. Drucksonde).

P124* Feinabgleich mA bei Min.

Dieser Parameter erlaubt den Feinabgleich des NivuMaster an eine angeschlossene Füllstandsonde. Sollte der erwartete Minimalwert der angeschlossenen Sonde nicht angezeigt werden, kann er hiermit angeglichen werden. P125* Feinabgleich mA bei Max.

Dieser Parameter erlaubt den Feinabgleich des NivuMaster an eine angeschlossene Füllstandsonde. Sollte der erwartete Maximalwert der angeschlossenen Sonde nicht angezeigt werden, kann er hiermit angeglichen werden.

13.12.3 Relaisparameter

Allen relaisbezogenen Parametern ist eine 2** vorangestellt. Die zweite Kommastelle der dreistelligen Parameternummer bezeichnet die Nummer des Relais:

> 21x für Relais 1 **2**x für Relais 2 **3**x für Relais 3 **4**x* für Relais 4

Menge

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

$25x^*$ für Relais 5 Die dritte Kommastelle der dreistelligen Parameternummer wählt spezifische Parameter für die Relaisprogrammierung aus:

Relais 1 : 210 bis 219 Relais 2 : 220 bis 229 Relais 3 : 230 bis 239 Relais 4*: 240 bis 249 Relais 5*: 250 bis 259

P210, P220, P230, P240*, P250* Relaistyp Der Parameter definiert die Arbeitsweise jedes Relais.

Nr.	Parameter	Auswahl	Beschreibung
210	Тур F = 0	0 = ohne Funktion	Das Relais ist nicht programmiert.
220		1 = Alarm	Das Relais ist als Alarmrelais program-
230			miert, d.h. im Alarmzustand ist das Relais
240*			abgefallen.
250*		2 = Schalter	Das Relais ist als Schalter programmiert.
			Beim Zustand EIN ist es angezogen, bei
			AUS ist es abgefallen.
		3 = Steuerung	Das Relais ist als Steuerungsrelais pro-
			grammiert. Beim Zustand EIN ist es ange-
			zogen, bei AUS ist es abgefallen.
		4 = Option	Das Relais kann für verschiedene Funktio-
		(sonstige Alarme)	nen programmiert werden. Beim Zustand
			EIN ist das Relais abgefallen, bei AUS ist
			es angezogen.

13.12.4 Alarme

P210, P220, P230, P240*, P250* =1 (Alarm) Der zweite Parameter jedes Relais legt die Alarmfunktion fest.

P211, P221, P231, P241*, P251* Relaisfunktion

Hier wird festgelegt, bei welchem Ereignis der Alarm ausgelöst wird.

Option	Beschreibung
0 = Aus	Relais nicht in Betrieb
1 = Füllstand	Die zu programmierenden Ein- und Aus-
	schaltpunkte beziehen sich auf den ge-
	messenen Füllstand.
2 = Tendenz	Die zu programmierenden Ein- und Aus-
	schaltpunkte sind als Tendenzwerte (Än-
	derung des Füllstands pro Zeiteinheit)
	einzugeben.
3 = Temperatur	Die zu programmierenden Ein- und Aus-
	schaltpunkte beziehen sich auf die am
	Sensor gemessene Temperatur.
4 = Echoverlust	Es müssen keine Ein- und Ausschaltpunk-
	te definiert werden, da der Echoverlust
	unabhängig vom Füllstand ist. Relais rea-
	giert nach Zeitvorgabe in P809.
5 = Uhrfehler	Bei einem Fehler der internen Systemuhr
	wird ein Alarm ausgegeben. Es müssen
	keine weiteren Parameter eingegeben
	werden.
Wenn Ultra Wizard = '2 Pumpe/D	lifferenz' ausgewählt ist:
6 = Pumpeneffizienz	Der Alarm bezieht sich auf die Pumpenet-
	fizienz welche den Relais P212, P222,
	P232, P242, P252) zugewiesen ist. Dar-
	uber ninaus mussen zwei Einstellungen
	Vorgenommen werden (P213, P223,
	P233, P243, P233 & P214, P224, P234, P244, P254), Sollworto in $%$ oingobon
14 - Servicealarm	Der Alarm wird ausgelöst, wenn das Da-
(nur verfügbar ab Firmware	tums-/Zeitintervall ausläuft
Version 7.4.3)168	Die Einstellung erfolgt unter System >
	Servicealarm > Datum (P194) > Intervall
	(P195) ^c .
	Der Alarm wird automatisch vom Gerät
	ausgelöst und ist werksseitig auf 12 Uhr
	eingestellt; d. h. der Alarm wird zum ein-
	gestellten Datum um 12 Uhr ausgelöst.
	Kein Sollwert erforderlich.

!

Bitte beachten Sie, dass Echoverlust und Uhrfehler auch mit einer entsprechenden Meldung auf dem Display angezeigt werden.

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

Der dritte relaisspezifische Parameter definiert die Alarmart für das zu programmierende Relais.

P212, P222, P232, P242*, P252* Alarmart

P211, P221, P231, P241*, P251* = 1, 2 oder 3

Option	Beschreibung	Schaltpunkte
1 = Allgemein (Werksein-	Relais zieht an wenn der Einschaltpunkt	EIN: P2 1 3 – 2 5 3*
stellung)	erreicht wird und fällt ab wenn der Aus-	AUS: P2 1 4 – 2 5 4*
	schaltpunkt erreicht wird.	
2 = Max. Alarm	Der Alarm ist unabhängig von den Einstel-	P213 – 253* und P214 – 254*
	lungen in P213 – 253* und 214 – 254 immer	
	beim höheren Füllstandwert EIN und beim	
	niedrigeren Füllstandwert AUS.	
3 = Max. Max. Alarm	Der Alarm ist unabhängig von den Einstel-	P213 – 253* und P214 – 254*
	lungen in P213-253* und P214-254* immer	
	beim höheren Füllstandwert EIN und beim	
	niedrigeren Füllstandwert AUS.	
4 = Min. Alarm	Der Alarm ist unabhängig von den Einstel-	P213 – 253* und P214 – 254*
	lungen in P213-253* und P214-254* immer	
	beim höheren Füllstandwert AUS und beim	
	niedrigeren Füllstandwert EIN.	
5 = Min. Min. Alarm	Der Alarm ist unabhängig von den Einstel-	P213 – 253* und P214 – 254*
	lungen in P213-253* und 214-254* immer	
	beim höheren Füllstandwert AUS und beim	
	niedrigeren Füllstandwert EIN.	
6 = In Band Alarm	Der Alarm ist innerhalb der Grenzen von	P213 – 253* und P214 – 254*
	P213-253* und 214-254* EIN und außerhalb	
	AUS geschaltet.	
7 = Außer Band Alarm	Der Alarm ist innerhalb der Grenzen von	P213 – 253 und P214 – 254*
	P213-253* und 214-254* AUS und außer-	
	halb EIN geschaltet.	

P211, P221, P231, P241*, P251* = 4 oder 5

Der dritte Parameter hat keine Funktion und wird daher nicht angezeigt.

Parameter vier und fünf definieren die Ein- bzw. Ausschaltpunkte jedes Relais. Für einen Max. Alarm muss der EIN-Schaltpunkt höher als der AUS-Schaltpunkt sein, für einen Min. Alarm umgekehrt. Siehe hierzu die entsprechende Tabelle Alarmart (P212, P222, P232).

P213, P223, P233, P243*, P253* Relaisschaltpunkt 1 Bestimmt den Ein- bzw. Ausschaltpunkt des Alarms je nach gewählter Alarmart.

P214, P224, P234, P244*, P254* Relaisschaltpunkt 2 Bestimmt den Ein- bzw. Ausschaltpunkt des Alarms je nach gewählter Alarmart.

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

•	

Schaltpunkte werden in Werten entsprechend der gewählten Funktion eingegeben:

Füllstand in Messeinheiten oder Prozent vom Messbereich bezogen auf den Leerstand.

Tendenz in Messeinheiten pro Minute oder Prozent vom Messbereich pro Minute. Für einen Alarm bei steigendem Füllstand geben Sie einen positiven Wert ein, für einen Alarm bei fallendem Füllstand einen negativen Wert.

Temperatur in °C

Effizienz in Prozent des Effizienzwertes

Um Füllstandschaltpunkte in Prozent einzugeben drückt man die Taste mit dem Beckensymbol und gibt den Wert in % relativ zum Leerstand ein.

13.12.5 Pumpensteuerung

P210, P220, P230, P240^{*}, P250^{*} = 2 (Pumpensteuerung) Wenn ein Relais für die Pumpensteuerung verwendet wird, definiert der zweite Parameter die Reihenfolge der Pumpenbereitschaft.

P211, P221, P231, P241*, P251* Funktion Dieser Parameter definiert die Art der Pumpenfunktion.

Pumpenfunktion	Beschreibung
0 = Aus (Werkseinstellung)	Relais nicht in Betrieb
1 = Fix / Staffel	Pumpen arbeiten mit fester Zuordnung der
	Schaltpunkte (fix), bei Erreichen der
	Schaltpunkte arbeiten immer alle pumpen
	(Staffel).
2 = Fix / Ersatz	Pumpen arbeiten mit fester Zuordnung der
	Schaltpunkte (fix), es arbeitet immer nur
	eine Pumpe (Ersatzbetrieb).
3 = Alt / Staffel	Pumpen arbeiten im Vertauschungsbe-
	trieb (alternierend), bei Erreichen der
	Schaltpunkte arbeiten immer alle Pumpen
	(Staffel).
4 = Alt / Ersatz	Pumpen arbeiten im Vertauschungsmo-
	dus (alternierend), es arbeitet immer nur
	eine Pumpe (Ersatzbetrieb).
5 = Ersatz + Staffel	Es sind z.B. 3 Pumpen programmiert. Die
	Pumpen arbeiten im Normalfall im Ersatz-
	betrieb. Es läuft immer nur eine Pumpe.
	Reicht die Pumpleistung einer Pumpe
	nicht aus, so steigt das Wasser weiter, bis
	dann der Schaltpunkt der dritten Pumpe
	erreicht wird. Ist dies der Fall und das
	Wasser steigt weiter, dann schaltet nach
	10 Sekunden die zweite Pumpe dazu
	(Staffel). Steigt auch jetzt das Wasser
	noch weiter, dann schaltet nach weiteren
	10 Sekunden auch die dritte Pumpe zu.
6 = % Std. / Staffel	Die Pumpen arbeiten in Abnangigkeit von
	Gen Betriebsstunden zueinander unter
	Einnaltung der Vorgabe des Lauizeit-
	vernaltnisses in P215 – P255°. Beim Er-
	allo Pumpon (Staffol)
7 - 9 Std / Frontz	Die Pumpen (Stallel).
7 = 70 Std. 7 ETSALZ	den Betriebsstunden zueinander unter
	Finhaltung der Vorgabe des Laufzeitver-
	hältnisses in P215 – P255* Es arbeitet
	immer nur eine Pumpe (Frsatz)
	immer nur eine Pumpe (Ersatz).

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

8 = FOFO / Alt / Staffel	Die Pumpen arbeiten mit Vertauschung (alternierend). Es läuft immer nur eine Pumpe (Ersatz). Die erste Pumpe die ein- geschaltet wird, wird auch als erstes wie- der ausgeschaltet (FOFO = First On / First Off).
9 = Standby	Wenn die Pumpen in Abhängigkeit von den Betriebsstunden zueinander unter Einhaltung der Vorgabe des Laufzeitver- hältnisses in P215 – P255* arbeiten, kann eine Pumpe in einen Bereitschafts- zustand versetzt werden. Sie beginnt zu arbeiten, wenn die Schaltpunkte der nächsten Pumpe erreicht werden.
10 = 2 Gruppen / Alternativen	Die Pumpen (z.B. 4 Stück) werden in 2 Gruppen je 2 Stück aufgeteilt. Innerhalb dieser Gruppen arbeiten die Pumpen mit Vertauschung.

!

Die Pumpen werden an ihrem Einschaltpunkt ein- und an ihrem Ausschaltpunkt ausgeschaltet. Zum Abpumpen (Füllstand senken) muss der Einschaltpunkt höher als der Ausschaltpunkt gesetzt werden; zum Einpumpen (Füllstand erhöhen) umgekehrt.

Der dritte Parameter jedes Relais bestimmt die Pumpengruppe.

P212, P222, P232, P242*, P252* Pumpengruppe Es besteht die Möglichkeit, die Pumpen in zwei Gruppen zu unterteilen. Die angewählten Funktionen P211 arbeiten dann nur innerhalb der Gruppe.

P213, P223, P233, P243*, P253* Relaisschaltpunkt 1 Definiert den Einschaltpunkt der Pumpe.

P214, P224, P234, P244*, P254* Relaisschaltpunkt 2 Definiert den Ausschaltpunkt der Pumpe.

P211, P221, P231, P241*, P251* = 6, 7 oder 9 (Laufzeitverhältnis)

P215, P225, P235, P245*, P255* Relaisschaltpunkt 3 Vorgabe des Laufzeitverhältnisses bei gewählter Pumpenfunktion 6 und 7.

P219, P229, P239, P249*, P259* Max. Tendenz

Dieser Parameter erlaubt die Pumpensteuerung im Fall einer vordefinierten Tendenz unabhängig vom Einschaltpunkt P213, P223, P233, P243, P253. Hat ein Relais bei Erreichen der vordefinierten Tendenz eingeschaltet, wird es erst bei Erreichen des Ausschaltpunkts P214, P224, P234, P244, P254 wieder ausgeschaltet. Die Max. Tendenz wird in Messeinheiten (P104) pro Minute entweder mit positivem (steigender Füllstand) oder negativem Vorzeichen (fallender Füllstand) eingegeben. Menge

^{*} Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

13.12.6 Steuerung

P210, P220, P230, P240*, P250* = 3 (Steuerung)

P211, P221, P231, P241*, P251* Relaisfunktion

Diese Funktion erlaubt die Zuweisung einer Steuerungsfunktion (keine Pumpensteuerungs- bzw. Alarmfunktion) zu einem Relais. Manche dieser Funktionen können zeitabhängig ablaufen.

Optionen	Beschreibung
0 = Aus	Relais nicht in Betrieb
1 = Zeitintervall	Das Relais zieht innerhalb des Grundzyk-
	lus P213 – P253* für die Zeitdauer P214 –
	P254* an.
2 = Intervalldauer	Die Intervalldauer kann dazu benutzt wer-
	den, um z.B. einen Füllstand mit Hilfe ei-
	nes Motorschiebers auf einem bestimmten
	Level zwischen zwei Punkten zu halten.
	Ein Relais zieht an am Beginn der Inter-
	valldauer und fällt ab an deren Ende. Ein
	Relais wird benötigt um den Füllstand an-
	zuheben, ein anderes um den Füllstand
	abzusenken. Mit Hilfe von Alarmart (P212,
	P222, P232, P242*, P252*) wird einem
	Relais entweder die Öffnungs- oder die
	Schließfunktion zugewiesen. Der Parame-
	ter Intervallzeit benötigt drei Schaltpunkte.
	Der Erste (P213, P223, P233, P243*,
	P253*) bestimmt den Füllstand, bei dem
	das Relais aktiviert werden soll. Das Re-
	lais zieht nach Ablauf der in Relaisschalt-
	punkt 3 (P215, P225, P235, P245*,
	P255*) eingestellten Zeit an und schaltet
	nach der in Relaisschaltpunkt 2 (P214,
	P224, P234, P244*, P254*) eingestellten
	Dauer wieder ab.

Der dritte Parameter bestimmt Zuordnung oder Zustand eines Relais.

P212, P222, P232, P242, P252 Alarmart Relais / Pumpengruppe

P211, P221, P231, P241*, P251* = 1 (Zeitintervall) Parameter hat keine Funktion.

P211, P221, P231, P241*, P251* = 2 (Intervalldauer) Hier wird dem Relais entweder der geöffnete Zustand (= 0) oder der geschlossene Zustand (= 1) zugewiesen.

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

Parameter vier, fünf und sechs werden verwendet, um Ein- bzw. Ausschaltpunkte der Relais für die Startreihenfolge festzulegen (siehe Tabelle Steuerungsfunktionen P211, P221, P231, P241*, P251*).

P211, P221, P231, P241*, P251* = 1 (Zeitintervall)

P213, P223, P233, P243*, P253* Relaisschaltpunkt 1 Dieser Parameter definiert wie lang das Relais angezogen bleibt. Eingabe in Minuten.

P214, P224, P234, P244*, P254* Relaisschaltpunkt 2 Dieser Parameter definiert die Zykluszeit für den Relaisbetrieb. Eingabe in Minuten.

P211, P221, P231, P241*, P251* = 2 (IntervalIdauer)

P213, P223, P233, P243*, P253* Relaisschaltpunkt 1 Hier wird der Füllstand eingestellt, bei dem das Relais aktiv wird. Eingabe in Messeinheiten P104.

P214, P224, P234, P244*, P254* Relaisschaltpunkt 2 Dieser Parameter definiert wie lang das Relais angezogen bleibt. Eingabe in Sekunden.

P215, P225, P235, P245*, P255* Relaisschaltpunkt 3 Hier wird die Begrenzungszeit zwischen den Einschaltperioden festgelegt. Eingabe in Minuten.

Siehe hierzu die entsprechenden Tabellen Relaisfunktionen P211, P221, P231, P241*, P251*.

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

13.12.7 Optionen

Wenn ein Relais mit optionalen Funktionen belegt ist, bestimmt der zweite Parameter dessen Funktion.

In diesem Modus reagiert das Relais zeit- bzw. ereignisbezogen in Echtzeit.

Optionen	Beschreibung
0 = Aus	Relais nicht in Betrieb
1 = Uhr	Das Relais zieht zur in Schaltpunkt 1 spe-
	zifizierten Tageszeit an und fällt nach der
	in Schaltpunkt 2 festgelegten Zeitdauer
	wieder ab.
2 = Summenzähler	Das Relais zieht nach Erreichen des in
	Schaltpunkt 1 programmierten Durchfluss-
	wertes für den Moment an. Dieser Para-
	meter definiert den Multiplikator für den
	Summenzähler (P820), welcher dann den
	Schaltpunkt des Relais festlegt. Zählt der
	Summenzähler z.B. in m ³ und das Relais
	soll nach 10.000 Litern schließen, muss
	hier der Faktor 10 eingegeben werden.
	Schaltpunkt 2 legt die Zeit in Sekunden
	fest, in der das Relais geschlossen blei-
	ben soll.

!

Soll ein Relais zur Steuerung eines Gerätes zu einer bestimmten Tageszeit eingesetzt werden, stellen Sie sicher, dass die Zeit in P932 richtig eingestellt ist. Bitte berücksichtigen Sie hierbei auch die Einstellungen bezüglich der Sommerzeit in P970 – P979.

In der Einstellung Optionen hat der dritte Parameter keine Funktion und wird daher nicht angezeigt.

Mit dem vierten und fünften Parameter werden Ein- bzw. Ausschaltpunkt des entsprechenden Relais bestimmt. Siehe hierzu auch die Tabelle Optionen (P211, P221, P231, P241*, P251*).

P213, P223, P233, P243*, P253* Relaisschaltpunkt 1

P211, P221, P231, P241*, P251* = 1 (Uhr) Die Schaltpunkte werden in Stunden und Minuten (SS:MM) eingegeben und bestimmen wann das Relais anzieht. Werkseinstellung = 00:00 (SS:MM).

P211, P221, P231, P241*, P251* =2 (Summenzähler) Eingabe der Schaltpunkte als mit dem internen Summenzähler (P820) zu multiplizierender Faktor, welcher die Schaltpunkt der Relaisschließung definiert. Werkseinstellung = 0,00

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

P214, P224, P234, P244*, P254* Relaisschaltpunkt 2

P211, P221, P231, P241*, P251* =1 (Uhr) Eingabe der Zeit in Minuten, in der das Relais angezogen bleibt. Werkseinstellung = 0,00 Min.

P211, P221, P231, P241*, P25*1 = 2 (Summenzähler) Eingabe der Zeit in Sekunden, in der das Relais angezogen bleibt. Werkseinstellung = 0,00 Sek.

13.12.8 Gemeinsame Parameter

P217, P227, P237, P247*, P257* Schaltspiele Der NivuMaster zeichnet auf, wie oft jedes Relais im Laufe seiner Benutzungszeit angezogen hat. Der Wert kann durch Eingabe jedes beliebigen Wertes zurückgesetzt werden.

P218, P228, P238, P248*, P258* Fehlermode

Der NivuMaster besitzt einen Parameter für den allgemeinen Fehlermode (P808). Dieser kann jedoch überbrückt werden, um so für jedes Relais einen eigenen Fehlermode zu programmieren.

Dieser Parameter legt das Relaisverhalten nach Ablauf der in P809 Fehlerzeit eingestellten Zeitspanne fest.

Optionen	Beschreibung
0 = Werkseinstellung	Relais nicht in Betrieb
1 = Halten	Pumpen arbeiten mit fester Zuordnung der
	Schaltpunkte (fix), bei Erreichen der
	Schaltpunkte arbeiten immer alle pumpen
	(Staffel).
2 = Abfallen	Pumpen arbeiten mit fester Zuordnung der
	Schaltpunkte (fix),
	es arbeitet immer nur eine Pumpe (Er-
	satzbetrieb).
3 = Anziehen	Pumpen arbeiten im Vertauschungsbe-
	trieb (alternierend), bei Erreichen der
	Schaltpunkte arbeiten immer alle Pumpen
	(Staffel).

Menge

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

13.13 Parameter Datenaufzeichnung

Diese Parameter enthalten Informationen wie folgt.

13.13.1 Übersichten Summenzähler

P460 bis P479 Übersichten Summenzähler

Die Parameter P460-P479 zeigen Datum und Durchfluss der letzten zehn Tage an. Der oberste Eintrag ist hier der Neueste, der unterste entsprechend der Älteste. Bei Überschreiten der maximalen Anzahl von zehn Einträgen wird der jeweils Älteste gelöscht und die anderen Einträge rücken entsprechend nach.

Um die Datenaufzeichnung innerhalb eines 24-stündigen Abschnitts zu gewährleisten, stellen Sie sicher, dass die Zeit in P932 richtig eingestellt ist. Bitte berücksichtigen Sie hierbei auch die Einstellungen bezüglich der Sommerzeit in P970-P979.

13.13.2 Temperatur

Die folgenden Parameter geben Auskunft über die Werte, die an der unter P852 ausgewählten Temperaturquelle erkannt werden. Hier können Werte lediglich ausgelesen und nicht verändert werden. Eine Änderung von P852 setzt den aktuellen Wert jedoch wieder zurück.

P580 Minimum Temperatur Zeigt die aufgezeichnete Minimaltemperatur an.

P581 Datum Minimum Temperatur Zeigt das Datum an, an dem die Minimaltemperatur erfasst wurde.

P582 Uhrzeit Minimum Temperatur Zeigt die Uhrzeit an, an der die Minimaltemperatur erfasst wurde.

P583 Maximum Temperatur Zeigt die aufgezeichnete Maximaltemperatur an.

P584 Datum Maximum Temperatur Zeigt das Datum an, an dem die Maximaltemperatur erfasst wurde.

P585 Uhrzeit Maximum Temperatur Zeigt die Uhrzeit an, an der die Maximaltemperatur erfasst wurde.

P586 Aktuelle Temperatur Zeigt den momentanen Temperaturwert an

13.14 OCM Parameter (Mengenmessung)

13.14.1 Einrichten der primären Messeinrichtung

P700 Primäre Messeinrichtung Typ

Mit diesem Parameter wird die Art der primären Messeinrichtung festgelegt und damit zusätzliche Parameter, die zur Durchflussberechnung benötigt werden der gewählten Einrichtung entsprechend (P701) aktiviert.

- 0 = Aus (Werkseinstellung)
- 1 = Exponentiell
- 2 = Venturi
- 3 = Wehr
- 4 = Bereich/Geschwindigkeit (optional)
- 5 = Spezial
- 6 = Universal

P701 Primäre Messeinrichtung Geben Sie hier die verwendete Messeinrichtung ein.

Bei P700 = 1 (Exponentiell)

Wählen Sie aus den folgenden Optionen:

- 1 = gestauchtes Rechteckwehr
- 2 = Trapez-Wehr (Cipolletti)
- 3 = Venturi-Gerinne
- 4 = Parshall-Gerinne
- 5 = Leopold Lagco Gerinne
- 6 = V-Wehr
- 7 = Andere

Bei P700 = 2 (Gerinne)

Wählen Sie aus den folgenden Optionen:

- 1 = rechteckig
- 2 = rechteckig mit Erhöhung
- 3 = U-Profil
- 4 = U-Profil mit Erhöhung

Bei P700 = 3 (Wehr)

Wählen Sie aus den folgenden Optionen:

- 1 = rechteckig
- 2 = V-Wehr 90°
- 3 = V-Wehr 53° 8'
- 4 = V-Wehr 28° 4'

Bei P700 = 4* (Bereich/Geschwindigkeit)

Die Durchflussberechnung in dieser Betriebsart ist nur möglich, wenn am optionalen mA-Eingang ein durchflussproportionales Geschwindigkeitssignal anliegt (bitte kontaktieren Sie NIVUS für weitere Details hierzu). Menge

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

Wählen Sie aus den folgenden Optionen:

- 1 = kreisförmig gerade (U-Profil), kreisförmiger Boden, gerade Seiten
- 2 = rechteckig
- 3 = trapezförmig
- 4 = Rundrohr

Bei P700 = 5 (Spezial)

Wählen Sie aus den folgenden Optionen:

- 1 = Palmer-Bowlus Gerinne
- 2 = H-Gerinne
- 3 = Winkel V-Wehr (andere als 90° bzw. 60°)

Bei P700 = 6 (Universal)

Sollte Ihre Messeinrichtung in keines der oben genannten Schemata passen, kann eine universelle Durchflussberechnung durchgeführt werden. Um Stützpunkte für Überfall und Durchfluss einzugeben (P730 - P793) wird eine Stützpunktkennlinie benutzt. Diese wird entweder vom Hersteller der Messeinrichtung zur Verfügung gestellt oder kann basierend auf den Abmessungen der Einrichtung erstellt werden.

Wählen Sie aus den folgenden Optionen:

- 1 = Durchflussberechnung universell "linear"
- 2 = Durchflussberechnung universell "interpoliert"
- 3* = Bereich x Geschwindigkeit (optional) universell "linear"
- 4* = Bereich x Geschwindigkeit (optional) universell "interpoliert"

P702 Berechnung

Wählen Sie hier die Berechnungsmethode. Obwohl beide Methoden zum selben Ergebnis kommen, liegt der Unterschied darin, dass unterschiedliche Informationen für die Berechnung benötigt werden. Im Falle proportionaler Berechnung reicht es normalerweise aus den maximalen Durchfluss bei maximalem Überfall zu kennen. Wählen Sie zwischen:

- 1 = Absolut
- 2 = Proportional

P703 Nullpunktoffset

In diesem Parameter wird die Distanz zwischen Leerstand und Beginn Überfall eingetragen, wo ein Durchfluss stattfindet. Dies wird benötigt, wenn in einer Messeinrichtung die Null-Referenz (Nullpunkt) höher als der Kanalboden liegt. Eingabe des Abstands in Messeinheiten P104.

P704 h-Max. (Maximum Überfall)

Geben Sie hier den Überfallwert (h Max.) in Messeinheiten P104 ein, der bei Maximaldurchfluss ansteht.

Beachten Sie, dass jede Änderung dieses Werts sich auf P106 (Messspanne) und umgekehrt auswirkt.

P705 Maximum Durchfluss

Wenn P702 auf 2 (proportional) eingestellt ist, geben Sie hier den bei maximalem Überfall (P704) auftretenden Durchfluss ein. Eingabe in Mengeneinheiten (P706) pro Zeiteinheiten (P707).

Bei P702 = 1 (absolut) und Eingabe aller relevanten Durchflussparameter wird der bei maximalem Überfall P704 auftretende Maximaldurchfluss berechnet sobald der NivuMaster in den RUN Mode zurückgekehrt ist. Angezeigt werden hier Mengeneinheiten (P706) pro Zeiteinheiten (P707).

P706 Mengeneinheiten

Wählen Sie aus den unten stehenden Mengeneinheiten zur Berechnung und Anzeige des Durchflusses aus:

Optionen	Beschreibung
1 = Liter (Werkseinstellung)	Durchfluss wird in Liter berechnet und
	angezeigt
$2 = m^3$	Durchfluss wird in m ³ berechnet und an-
	gezeigt
$3 = ft^3$	Durchfluss wird in ft ³ berechnet und ange-
	zeigt
4 = UK Gallons	Durchfluss wird in UK Gallons berechnet
	und angezeigt
5 = US Gallons	Durchfluss wird in US Gallons berechnet
	und angezeigt

P707 Zeiteinheiten

Wählen Sie aus den unten stehenden Zeiteinheiten zur Berechnung und Anzeige des Durchflusses aus:

Option	Beschreibung
1 = pro Sekunde (Werkseinstel-	Durchfluss wird in Mengeneinheit pro Se-
lung)	kunde berechnet und angezeigt
2 = pro Minute	Durchfluss wird in Mengeneinheit pro Mi-
	nute berechnet und angezeigt
3 = pro Stunde	Durchfluss wird in Mengeneinheit pro
	Stunde berechnet und angezeigt
4 = pro Tag	Durchfluss wird in Mengeneinheit pro Tag
	berechnet und angezeigt

P708 Dezimalstellen Durchfluss

Hier wird die Anzahl der Nachkommastellen der Durchflussanzeige angegeben. Es kann ein Wert zwischen 1 und 3 angegeben werden. Werkseinstellung = 2

P709 Minimalmengenunterdrückung

Geben Sie hier den minimalen Durchflusswert in Prozent des Durchflusses an, der zur Berechnung von Summenwerten herangezogen werden soll. Eingabe in Prozent vom maximalen Durchfluss. Werkseinstellung = 5 %.

13.14.2 Abmessungen

P710 Abmessung A

Eingabe von Abmessung "A" der Messeinrichtung wenn verfügbar (siehe Tabelle unten).

P711 Abmessung B

Eingabe von Abmessung "B" der Messeinrichtung wenn verfügbar (siehe Tabelle unten).

P712 Abmessung C

Eingabe von Abmessung "C" der Messeinrichtung wenn verfügbar (siehe Tabelle unten).

P713 Abmessung D

Eingabe von Abmessung "D" der Messeinrichtung wenn verfügbar (siehe Tabelle unten).

Messeinrichtung	P710 Abm. "A"	P711 Abm. "B"	P712 Abm. "C"	P713 Abm. "D"
P700 = 2 Venturi	Breite Einström-	Breite Einschnü-	Länge Ein-	nicht benötigt
P701 = 1 rechteckig	seite	rung	schnürung	
P700 = 2 Venturi	Breite Einström-	Breite Einschnü-	Länge Ein-	Höhe Erhö-
P701 = 2 rechteckig mit Erhö-	seite	rung	schnürung	hung
hung				
P700 = 2 Venturi	Breite Einström-	Durchmesser	Länge Ein-	nicht benötigt
P701 = 3 U-Profil	seite	Einschnürung	schnürung	
P700 = 2 Venturi	Breite Einström-	Durchmesser	Länge Ein-	Höhe Erhö-
P701 = U-Profil mit Erhöhung	seite	Einschnürung	schnürung	hung
P700 = 3 Wehr	Breite Einström-	Breite Wehrkro-	Höhe Wehrkro-	nicht benötigt
P701 = 1 rechteckig	seite	ne	ne	
P700* = 4 Bereich Geschwindig-	Durchmesser	nicht benötigt	nicht benötigt	nicht benötigt
keit	Basis			
P701 = 1 kreisförmig gerade				
P700* = 4 Bereich Geschwindig-	Kanalbreite	nicht benötigt	nicht benötigt	nicht benötigt
keit				
P701 = 2 rechteckig				
P700* = 4 Bereich Geschwindig-	Kanalbreite	Kanalbreite un-	Gerinnetiefe	nicht benötigt
keit	oben	ten		
P701 = 3 trapezförmig				
P700* = 4 Bereich Geschwin-	Durchmesser	nicht benötigt	nicht benötigt	nicht benötigt
digkeit	innen			
P701 = Rundrohr				
P700 = 5 Spezial	Größe Gerinne	nicht benötigt	nicht benötigt	nicht benötigt
P701 = 1 Palmer-Bowlus				
P700 = 5 Spezial	Größe Gerinne	nicht benötigt	nicht benötigt	nicht benötigt
P701 = 2 H-Gerinne				
P700 = 5 Spezial	Winkel V-	nicht benötigt	nicht benötigt	nicht benötigt
P701 = 3 Winkel V-Wehr	Ausschnitt			

P714 Rauheitskoeffizient (Ks)

Im Falle von P700 = 2 (Venturi) wird mit diesem Parameter der Rauheitskoeffizient des Kanals in Millimeter festgelegt (siehe Tabelle unten).

Oberfläche	Ks- Werte		
	Guter Wert mm	Normaler Wert mm	
Kunststoff etc.			
Plexiglas, PVC oder andere glatte Oberflächen		0,003	
Faserbeton		0.015	
mit kunstharzgebundener Glasfaser verkleidetes		0,010	
Blech oder gut abgeschliffenes und gestrichenes Holz	0,03	0,06	
Metall			
glattes, gebürstetes und poliertes Metall	0,003	0,006	
unbeschichtetes Blech, rostfrei	0,015	0,03	
gestrichenes Metall	0,03	0,06	
galvanisiertes Metall	0,06	0,15	
gestrichener oder beschichteter Metallguss	0,06	0,15	
unbeschichteter Metallguss	0,15	0,3	
Beton			
vorhandene bzw. vorgegossene Einbauten mit Stahl-			
verschalung, geglättete oder aufgefüllte Zwischen-			
räumen	0,06	0,15	
vorhandene bzw. vorgegossene Einbauten mit Sper-			
rholz oder bearbeiteter Holzverschalung	0,3	0,6	
geglätteter Zementputz	0,3	0,6	
Beton mit dünner Sielhaut	0,6	1,5	
Holz			
geglättetes Holz oder Sperrholz	0,3	0,6	
gut abgeschliffen und gestrichen	0,03	0,06	

P715 Wassertemperatur

Wenn P700 = 2 (Venturi), dient dieser Parameter zur Eingabe der durchschnittlichen Wassertemperatur in °C.

P717 Exponent Dieser Parameter dient zur Einstellung des Exponenten im Falle der Einstellungen P700 = 1 (exponentiell) und P701 = 7 (Andere).

P718 K-Faktor Dient zur Einstellung des K-Faktors im Falle von P700 =1 (exponentiell) und P702 =1 (absolut).

P719 Breite Einschnürung

Mit diesem Parameter wir die Breite der Einschnürung im Falle von P700 = 1 (exponentiell) und P701 = 4 (Parshall Gerinne) gewählt. Nach Setzen der Einschnürungsbreite werden Exponent P717 und K-Faktor P718 automatisch eingestellt.

13.14.3 Berechnungen

Die folgenden Parameter P720 bis P725 stellen vom NivuMaster berechnete Werte dar und sind lediglich Ableseparameter. Daher gibt es hier auch keine Werkseinstellung.

P720 Bereich Zeigt den berechneten Bereichswert im Falle von P700 = 2 (Venturi) und P700 = 4 (Bereich/Geschwindigkeit) an.

P721 Cv Zeigt den berechneten Cv-Wert im Falle von P700 = 2 (Venturi) an.

P722 Cd Zeigt den berechneten Cd-Wert im Falle von P700 = 2 (Venturi) an.

P723 Ce Zeigt den berechneten Ce-Wert im Falle von P700 = 2 (Wehr) an.

P724 Cu Zeigt den berechneten Cu-Wert im Falle von P700 = 2 (Venturi) und P701 = 3 oder 4 (U-Profil) an.

P725 Kb Zeigt den berechneten Kb-Wert im Falle von P700 = 3 (Wehr) und P701 = 1 (Rechteckwehr) an.

13.14.4 Geschwindigkeit*

Die Durchflussberechnung mittels des Geschwindigkeitsbereichs ist nur möglich, wenn am optionalen mA-Eingang ein durchflussproportionales Signal von einem Geschwindigkeitssensor verfügbar ist.

Die Parameter P726 bis P729 werden benötigt, um den optionalen 4-20 mA-Eingang für einen Geschwindigkeitssensor zu konfigurieren. Der NivuMaster ordnet den 4-20 mA-Eingang automatisch einem Geschwindigkeitssensor zu wenn eine Bereichs/Geschwindigkeitsapplikation gewählt ist. Daher muss die Zuordnung P101 Sensor =1 (Hilfseingang) nicht von Hand ausgeführt werden.

P726 mA-Eingang Minimum

Dieser Parameter definiert den Eingangswert, der zur Darstellung der minimalen Geschwindigkeit (P728) herangezogen wird, wenn der Eingang einem Geschwindigkeitssensor zugeordnet ist. **Werkseinstellung = 4 mA**.

P727 mA-Eingang Maximum

Dieser Parameter definiert den Eingangswert, der zur Darstellung der maximalen Geschwindigkeit (P729) herangezogen wird, wenn der Eingang einem Geschwindigkeitssensor zugeordnet ist. **Werkseinstellung = 20 mA**.

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

P728 Minimalgeschwindigkeit

Hier wird die Minimalgeschwindigkeit definiert, bei dem das Minimum (P726) des mA-Eingangs angezeigt wird. **Werkseinstellung = 0 m/sec**.

P729 Maximalgeschwindigkeit

Hier wird die Maximalgeschwindigkeit definiert, bei dem das Maximum (P727) des mA-Eingangs angezeigt wird. **Werkseinstellung = 1 m/sec**.

13.14.5 Stützpunkte

P730 – P793 Stützpunkte

Eine universelle Mengenberechnung kann durchgeführt werden, wenn die primäre Messeinrichtung keiner der im NivuMaster vorprogrammierten Einrichtungen entspricht. Um Stützpunkte für Überfall und Durchfluss einzugeben (P730 -P793) wird eine Stützpunktkennlinie benutzt. Diese wird entweder vom Hersteller der Messeinrichtung zur Verfügung gestellt oder kann basierend auf den Abmessungen der Einrichtung erstellt werden.

Stützpunkte müssen als Paare bestehend aus Überfallstützpunkt und entsprechendem Durchflussstützpunkt eingegeben werden. Das erste Paar Stützpunkte muss Null Überfall bzw. Durchfluss entsprechen, das letzte Paar Maximum Überfall und Durchfluss. Je höher die Anzahl der eingegebenen Stützpunkte (Paare), desto höher die Genauigkeit. Es können bis zu 32 Stützpunktpaare eingegeben werden.

13.14.6 Tabellen

P796 Stützpunkte zurücksetzen

Dieser Parameter erlaubt das Rücksetzen der Stützpunkte (P730 – P793) auf deren Werkseinstellung, ohne einzeln auf sie zugreifen zu müssen. Sollte es notwendig werden, einzelne Stützpunkte zurückzusetzen, kann dies durch direkten Zugriff auf den entsprechenden Parameter (P730 – P793) und Eingabe des betreffenden Werts durchgeführt werden.

P797 Eingestellte Stützpunkte

Dieser Parameter gibt einen Überblick über die Anzahl der eingegebenen Stützpunkte ohne auf einzelne Punkte zugreifen zu müssen. Hier können keine Werte verändert werden, da dieser Parameter nur der Ablesung dient.

13.14.7 Mittlerer Durchfluss

P863 Mittlerer Durchfluss

Dieser Parameter zeigt den mittleren Durchfluss in der in Durchschnittszeit (P864) eingestellten Zeit an. Er ist nicht veränderbar.

P864 Durchschnittszeit

Mit diesem Parameter wird die zur Berechnung des mittleren Durchflusses (P863) verwendete Zeitspanne definiert.

13.15 Displayparameter

13.15.1 Optionen

P800 Einheiten Display

Mit diesem Parameter wird festgelegt ob Messwerte in Messeinheiten (P104) oder als Prozentwert des Messbereichs angezeigt wird.

Option	Beschreibung
1 = Absolut (Werkseinstellung)	Anzeige in Messeinheiten (P104)
2 = Prozentsatz	Anzeige in Prozent des Messbereichs

P801 Kommastellen

Dieser Parameter bestimmt die Anzahl der Nachkommastellen auf dem Display im RUN Mode.

Minimum = 0 (keine Nachkommastellen), Maximum = 3 (3 Nachkommastellen). **Werkseinstellung = 2** (2 Nachkommastellen).

P802 Offset Anzeige

Eingabe des Wertes, der zum angezeigten Wert hinzu addiert wird. Relaisschaltpunkte und mA-Ausgang werden nicht beeinflusst.

P804 Faktor Anzeige

Eingabe des Faktors, mit dem der angezeigte Wert multipliziert wird. Relaisschaltpunkte und mA-Ausgang werden nicht beeinflusst.

13.15.2 Fehlermode

P808 Fehlermode

Eingabe wie sich die Anzeige und der mA-Ausgang im Fehlerfall (z.B. Echoverlust) nach Ablauf der Fehlerzeit P809 verhalten sollen.

Option	Beschreibung
1 = Halten (Werkseinstellung)	Der zuletzt gemessene Wert wird erhalten
2 = Max	Anzeige und mA-Ausgang gehen auf Max-
	Wert
3 = Min	Anzeige und mA-Ausgang gehen auf Min-
	Wert

Im Fehlerfall können Display, Relais und mA-Ausgang in voneinander unabhängige Zustände schalten. Um dies für Relais entsprechend einzustellen siehe P218, P228, P238, P248* und P258*, für den mA-Ausgang siehe P840.

P809 Fehlerzeit

Eingabe der Zeitdauer nach Auftreten eines Fehlers, bevor die Fehlerfunktion aktiviert wird. Werkseinstellung = 2 Minuten.

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

13.15.3 Hilfsanzeige

P810 Einheiten

Bestimmt ob die Messeinheiten (P104) auf der Hilfsanzeige dargestellt werden oder nicht.

Option	Beschreibung
0 = Nein	Einheiten werden nicht angezeigt
1 = Ja (Werkseinstellung)	Einheiten werden angezeigt

P811 Alarmstatus

Dieser Parameter legt fest, ob Benachrichtigungen über den Alarmstatus auf der Hilfsanzeige dargestellt werden oder nicht.

Option	Beschreibung
0 = Nein (Werkseinstellung)	Einheiten werden nicht angezeigt
1 = Ja	Einheiten werden angezeigt

P812 Pumpenstatus

Legt fest ob der Pumpenstatus im Display gemeldet wird oder nicht.

Option	Beschreibung
0 = Nein (Werkseinstellung)	Pumpenstatus wird nicht angezeigt
1 = Ja	Pumpenstatus wird angezeigt

P813 Status Steuerung

Hier wird festgelegt ob der Relais-Steuerstatus auf der Hilfsanzeige angezeigt wird oder nicht.

Option	Beschreibung
0 = Nein (Werkseinstellung)	Steuerstatus wird nicht angezeigt
1 = Ja	Steuerstatus wird angezeigt

P814 Optionen

Definiert ob der Relais-Optionsstatus angezeigt werden soll oder nicht.

Option	Beschreibung
0 = Nein (Werkseinstellung)	Optionsstatus wird nicht angezeigt
1 = Ja	Optionsstatus wird angezeigt

P816 Summenzähler (rücksetzbar)

Bestimmt ob der rücksetzbare Summenzähler im Hilfsdisplay angezeigt wird oder nicht.

Option	Beschreibung
0 = Aus (Werkseinstellung)	Summenzähler wird nicht angezeigt
1 = Ein	Summenzähler wird angezeigt

13.15.4 Summenzähler

P820 Summenzähler

Zeigt den momentanen Wert des nicht rücksetzbaren Summenzählers an. Durch Benutzung des Tastenkürzels Σ kann der Summenzähler im Normalbetrieb abgelesen werden. Im Gegensatz zum rücksetzbaren Summenzähler kann dieser jedoch nicht im Run-Mode zurückgesetzt werden. Dies kann jedoch im Programm-Mode durch Aufrufen von P820 und Eingabe von 0 ausgeführt werden.

P821 Summenzähler (rücksetzbar)

Zeigt den momentanen Wert des rücksetzbaren Summenzählers an. Dieser Summenzähler kann entweder im Normalbetrieb auf der Hilfsanzeige oder aber durch Drücken des Summenzähler-Tastenkürzels dargestellt werden.

P822 Summenzähler Kommastellen

Hier wird die Anzahl der Kommastellen des Summenzählers definiert. Der Wert kann zwischen 1 und 3 liegen. **Werkseinstellung = 2**.

P823 Summenzähler Multiplikator

Benutzen Sie diesen Parameter falls der Summenzähler zu hohe oder zu kleine Werte zählt. Hier kann ein Faktor eingegeben werden, mit dem der tatsächliche Durchflusswert multipliziert wird, bevor er angezeigt wird.

Option	Beschreibung
1 = 1/1000	Zählt in Schritten von 1/1000 Einheit weiter
2 = 1/100	Zählt in Schritten von 1/100 Einheit weiter
3 = 1/10	Zählt in Schritten von 1/10 Einheit weiter
4 = 1	Zählt in Schritten von 1 Einheit weiter
5 = 10	Zählt in Schritten von 10 Einheiten weiter
6 = 100	Zählt in Schritten von 100 Einheiten weiter
7 = 1000	Zählt in Schritten von 1000 Einheiten weiter
8 = 10.000	Zählt in Schritten von 10.000 Einheiten weiter
9 = 100.000	Zählt in Schritten von 100.000 Einheiten weiter
10 = 1.000.000	Zählt in Schritten von 1.000.000 Einheiten weiter

P824 Summenzähler Aktivierung

Legt fest ob der Summenzähler aktiv ist oder nicht.

Option	Beschreibung
0 = Aus	Summenzähler nicht aktiv
1 = Ein	Summenzähler aktiv

13.15.5 Balkenanzeige

P829 Balkenanzeige

In der Werkseinstellung zeigt die Balkenanzeige Werte als Prozentsatz der in P100 gewählten Einstellung an. Der Parameter wird bei der Auswahl von P100 automatisch korrekt eingestellt, kann jedoch geändert werden falls nötig.

Option	Beschreibung
1 = Füllstand	Balkenanzeige stellt den Füllstand dar
2 = Überfall (Werkseinstellung)	Balkenanzeige stellt den Überfall dar
3 = Durchfluss	Balkenanzeige stellt den Durchfluss dar

13.16 Parameter mA-Ausgang

13.16.1 Bereich

P830 mA-Bereich

Dieser Parameter bestimmt den Bereich des mA-Ausgangs.

Option	Beschreibung
0 = Aus	mA-Ausgang nicht aktiv
1 = 0 bis 20 mA	mA-Ausgang direkt proportional zum mA-
	Mode (P831), d.h. bei Wert 0 % zeigt der
	Ausgang 0 mA, bei Wert 100 % 20 mA.
2 = 4 bis 20 mA	mA-Ausgang direkt proportional zum mA-
	Mode (P831), d.h. bei Wert 0 % zeigt der
	Ausgang 4 mA, bei Wert 100 % 20 mA.
3 = 20 bis 0 mA	mA-Ausgang umgekehrt proportional zum
	mA-Mode (P831), d.h. bei Wert 0 % zeigt
	der Ausgang 20 mA, bei Wert 100 %
	0 mA.
4 = 20 bis 4 mA	mA-Ausgang umgekehrt proportional zum
	mA-Mode (P831), d.h. bei Wert 0 % zeigt
	der Ausgang 20 mA, bei Wert 100 %
	4 mA.

13.16.2 Zuordnung

P831 mA-Zuordnung

Hier wird festgelegt, wie der mA-Ausgang auf gemessene Werte anspricht. In der Werkseinstellung arbeitet er genau wie das Display (P100). Dieses Verhalten kann jedoch geändert werden.

Option	Beschreibung
0 = Werkseinstellung	mA-Ausgang relativ zu Mode P100
1 = Abstand	mA-Ausgang relativ zu Abstand
2 = Füllstand	mA-Ausgang relativ zu Füllstand
3 = Leerraum	mA-Ausgang relativ zu Leerraum
4 = Überfall	mA-Ausgang relativ zu Überfall
5 = Durchfluss	mA-Ausgang relativ zu Durchfluss

13.16.3 Grenzwerte

Vorgabe von mA-Werten, die während des Betriebes nicht über- bzw. unterschritten werden dürfen.

P834 Min. Füllstand

Bestimmt Füllstand, Abstand oder Leerraum (abhängig von der gewählten mA-Zuordnung P831), bei welchem der minimale Füllstand auftritt (0 bzw. 4 mA, je nach Einstellung in P830). **Werkseinstellung = 0,000 m**.

P835 Max. Füllstand Bestimmt Füllstand, Abstand oder Leerraum (abhängig von der gewählten mA-Zuordnung P831), bei welchem der maximale Füllstand auftritt (20 mA). **Werkseinstellung = 6,000 m**.

13.16.4 Grenzen

P836 Min. Begrenzung

Dieser Parameter definiert den niedrigsten Wert auf den der mA-Ausgang fallen kann. Diese Einstellung kann jedoch umgangen werden, wenn z.B. das angeschlossene Gerät mit Werten unterhalb von 2 mA nicht umgehen kann. **Werks**einstellung = 0,00 mA.

P837 Max. Begrenzung

Dieser Parameter definiert den höchsten Wert auf den der mA-Ausgang steigen kann. Diese Einstellung kann jedoch umgangen werden, wenn z.B. das angeschlossene Gerät mit Werten oberhalb von 18 mA nicht umgehen kann. **Werks**einstellung = 20,00 mA.

13.16.5 Feinabgleich

P838 Unterer Wert

Wenn ein angeschlossenes Gerät nicht kalibriert ist und nicht den korrekten unteren Wert anzeigt, kann mit dieser Funktion ein entsprechender Feinabgleich vorgenommen werden. Der Offset kann entweder direkt eingeben oder mittels der Pfeiltasten so lange erhöht bzw. abgesenkt werden, bis der erwartete Wert angezeigt wird.

P839 Oberer Wert

Wenn ein angeschlossenes Gerät nicht kalibriert ist und nicht den korrekten oberen Wert anzeigt, kann mit dieser Funktion ein entsprechender Feinabgleich vorgenommen werden. Der Offset kann entweder direkt eingeben oder mittels der Pfeiltasten so lange erhöht bzw. abgesenkt werden, bis der erwartete Wert angezeigt wird.

13.16.6 Fehlermode

P840 Fehlermode für mA-Ausgang separat

Hier wird definiert, wie der mA-Ausgang sich im Fehlerfall verhalten soll. In der Werkseinstellung verhält er sich exakt wie beim Fehlermode P808. Diese Einstellung kann jedoch übergangen werden, um den mA-Ausgang in einen unabhängigen Fehlermode zu bringen.

Option	Beschreibung
0 = Werkseinstellung	Wert aus P808
1 = Halten	mA-Ausgang hält den letzten bekannten Wert
2 = Min.	mA-Ausgang springt zum niedrigsten Wert
3 = Max.	mA-Ausgang springt zum höchsten Wert

13.17 Kompensation

13.17.1 Offset

P851 Offsetwert

Eingabe des Messwertoffsets (in Einheit P104). Dieser Wert beeinflusst die Anzeige, den mA-Ausgang und die Relaisschaltpunkte. **Werkseinstellung = 0**.

13.17.2 Temperatur

P852 Temperaturquelle

Dieser Parameter bestimmt den Ausgangspunkt der Temperaturmessung. In der Werkseinstellung (P852 =1) wird ein vorhandener Temperaturfühler automatisch erkannt. Sollte kein Temperaturwert verfügbar sein, wird die fest eingestellte Temperatur aus P854 verwendet.

Option	Beschreibung
1 = Automatik	Verwendet eventuell vorhandenen Tem-
	peraturfühler oder die fest eingestellte
	Temperatur (P854), falls kein Temperatur-
	sensor erkannt wird.
2 = Sensor	Verwendet immer Temperaturwerte vom
	Sensor.
3 = fest eingestellt	Verwendet immer die fest eingestellte
	Temperatur (P854).
4* = erweiterter Bereich "A"	Verwendet eine externe Temperaturmes-
	sung mit einem Bereich von –25 °C bis
	5°C.
5* = erweiterter Bereich "B"	Verwendet eine externe Temperaturmes-
	sung mit einem Bereich von –25 °C bis
	125 °C.

P854 Feste Temperatur

Einstellung der zu benutzenden Festtemperatur in °C im Falle von P852 (Temperaturquelle) = 3. Werkseinstellung = 20°C.

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

13.17.3 Schallgeschwindigkeit (für P-Serie)

Laufzeit Ultraschall (P860)

Dieser Parameter ermöglicht die Veränderung der Schallgeschwindigkeit entsprechend der Atmosphäre in welcher der Sensor arbeitet. In der Werkseinstellung ist die Schallgeschwindigkeit für Luft bei Zimmertemperatur (20 °C) gesetzt. Werkseinstellung = 342.72 m/sec.

Die folgenden beiden Parameter können für die Neukalibrierung der Schallgeschwindigkeit (P860) verwendet werden, wenn der Schallkegel des Sensors durch anderes Material als Luft dringt oder wenn es Schwankungen bei der Temperatur zwischen Sensorsendefläche und Medium gibt.

Um beste Ergebnisse zu erzielen, sollte die Kalibrierung erfolgen wenn der Füllstand nahezu Null ist und evtl. Dämpfe sich gesetzt haben.

Kalibrierabstand 1 (P861)

Dieser Parameter wir genutzt, um die Schallgeschwindigkeit von Sensor 1 neu zu kalibrieren.

Kalibrierabstand 2 (P862)*

Dieser Parameter wir genutzt, um die Schallgeschwindigkeit von Sensor 2 neu zu kalibrieren, wenn P100 = 4 (Mittelwert)*, 5 (Differenz Füllstand)* oder 6 (Durchschnittsvolumen).

Messen Sie den Abstand von der Sensorsendefläche zur Mediumsoberfläche und geben Sie diesen Wert in P861/862* "Maßeinheiten P104" ein. P860 wird automatisch aktualisiert um Unterschiede zwischen dem angezeigten und eingegebenen Werten zu kompensieren.

^{* =} Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

13.18 Stabilität 13.18.1 Dämpfung

Die Dämpfung beeinflusst nur die Anzeige und den mA-Ausgang. Sie hat keine Auswirkung auf die Auswertegeschwindigkeit des NivuMaster. Hinkt die Messung trotz geringer Dämpfung dem Füllstand hinterher, so liegt die Ursache in der Geschwindigkeit der Echoauswertung. Diese kann über Serviceparameter geändert werden.

P870 Dämpfung steigend Eingabe der Dämpfung bei steigendem Füllstand in Einheiten/Min. **Werkseinstellung = 10 m/Min**.

P871 Dämpfung fallend Eingabe der Dämpfung bei fallendem Füllstand in Einheiten/Min. **Werkseinstellung = 10 m/Min**.

13.18.2 Symbolanzeige

P872 Befüllung

Dieser Parameter legt fest, ab welcher Rate das Befüllungssymbol auf dem Display aktiviert wird. **Werkseinstellung = 10 m/Min**.

P873 Entleerung Dieser Parameter legt fest, ab welcher Rate das Entleerungssymbol auf dem Display aktiviert wird. **Werkseinstellung = 10 m/Min.**

13.18.3 Tendenzrate

P874 Tendenzerneuerung Hier wird festgelegt auf welche Art die Tendenzberechnung erfolgt: 0 = kontinuierliche Erneuerung des Tendenzwerts, 1 = Berechnung des Tendenzwerts über nachfolgende Werte (Werkseinstellung).

P875 Zeitbereich Zeitdauer, nach deren Ablauf die Tendenz spätestens neu berechnet wird. Werkseinstellung = 60 Sekunden.

P876 Höhendifferenz Eingabe der Höhenstandsänderung, nach der die Tendenzberechnung erfolgt. Werkseinstellung = 0,05 m.

P877 Tendenzwert Anzeige des aktuellen Tendenzwertes.

P878 Unterdrückung

Tendenzwert wird nur oberhalb des hier angegebenen Schwellwertes aktualisiert. Dient zur Unterdrückung ungewollter Beeinflussung durch Unebenheiten oder Wellenbildung auf der Mediumsoberfläche.

13.19 Echoverarbeitung

P900 Status Sensor 1

Dieser Parameter zeigt den aktuellen Zustand des Sensors an.

Option	Beschreibung
0 = OK	Sensor arbeitet ordnungsgemäß
1 = nicht aktiv	Sensor nicht benutzt (stattdessen mA-
	Eingang, daher P101 = 1)
2 = Fehler	Fehler (vertauschte Leitungen, Kurz-
	schluss etc.)
3 = kein Sensor	Sensor nicht gefunden

P901 Echogüte

Anzeige der Echogüte in %. Maß für die Sicherheit, dass das ausgewertete Echo das richtige Echo ist.

P902 Amplitude 1 Anzeige der Amplitudenhöhe des ausgewerteten Echos.

P903 Rauschen Mittel Anzeige des durchschnittlichen Störgeräuschpegels.

P904 Rauschen Spitze Anzeige des Störgeräuschspitzenwertes.

13.19.1 Sensor 2

Parameter P910 – P914 Diese Parameter enthalten dieselben Informationen, wie in Sensor 1 beschrieben (P900-P904)

13.20 Systemparameter

13.20.1 Codewort

P921 Aktivierung Codewort Ein- bzw. Ausschalten der Codewortfunktion: 1= Eingeschaltet (Werkseinstellung), **0 = Ausgeschaltet**. Zugang Programmiercode über E-Taste.

P922 Eingabe Code Codewort für Programmierzugang ändern. Werkseinstellung = 1997.

13.20.2 Sicherungen

P925 Parameter Backup Dient zur Sicherung von zwei Parametereinstellungen:

Option	Beschreibung
1 = Backup 1	Parameter in Speicherplatz 1 sichern
2 = Backup 2	Parameter in Speicherplatz 2 sichern
2 = Wiederherstellung 1	Parameter aus Speicherplatz 1 laden
4 = Wiederherstellung 2	Parameter aus Speicherplatz 2 laden

13.20.3 Systeminfo

Die folgenden drei Parameter beeinflussen die Funktionsweise des NivuMaster nicht. Im Falle technischer Anfragen werden die darin enthaltenen Informationen jedoch benötigt.

P926 Software Revision Anzeige der aktuellen Software Revision

P927 Hardware Revision Anzeige der Hardware Revision (Platinen).

P928 Seriennummer Anzeige der internen Seriennummer

P929 Nr. Messstelle Erlaubt die Eingabe einer kundenseitigen Messstellennummer. Werkseinstellung = 1.

P930 Werkseinstellungen (General-Reset) Rücksetzen der Parameter auf die Werkseinstellungen.

13.20.4 Datum und Uhrzeit

Datum und Uhrzeit werden benötigt, um bestimmte relaisspezifische Funktionen zu steuern und Einträge in Aufzeichnungsprotokollen mit Zeitstempeln zu versehen.

P931 Datum Eingabe des aktuellen Datums im in P933 (Format Datum) eingestellten Format. Kann bei Bedarf zurückgesetzt werden.

P932 Uhrzeit Eingabe der aktuellen Uhrzeit im 24-Stunden-Format. Kann bei Bedarf zurückgesetzt werden. P933 Format Datum

Auswahl des Formats der Datumseinstellung: 1 = TT:MM:JJ, 2 = MM:TT:JJ, 3 = JJ:MM:TT. Werkseinstellung = 1.

13.20.5 LED Farben

Jedem Relais ist auf der Frontseite des Gehäuses eine LED zugeordnet, die den jeweiligen Relaisstatus anzeigt. In der Werkseinstellung wird ein programmiertes Relais im Ruhezustand durch die Farbe "gelb" repräsentiert. Ein Relais im Alarmzustand wir "rot" dargestellt. Relais denen Funktionen wie Pumpe, Steuerung oder Optionen zugewiesen sind, leuchten "grün". Die LEDs nicht programmierter Relais leuchten nicht. Diese Einstellungen können mit den folgenden Parametern geändert werden.

Nr.	Parameter	Auswahl	Beschreibung
935	Farbe AUS	0=keine Farbe	In diesem Parameter wählt man die LED Far-
		1=rot	be, die ein programmiertes Relais haben soll,
		2=grün	wenn es in seinem AUS-Zustand ist.
		3=gelb	
936	Alarmfarbe	0=keine Farbe	In diesem Parameter wählt man die Farbe
		1=rot	eines Alarmrelais, wenn es im angezogenen
		2=grün	Zustand ist.
		3=gelb	
937	Farbe	0=keine Farbe	In diesem Parameter wählt man die Farbe
	Pumpenrelais	1=rot	eines Pumpenrelais aus, wenn es im ange-
		2=grün	zogenen Zustand ist.
		3=gelb	
938	Farbe Steuerungsrelais	0=keine Farbe	In diesem Parameter wählt man die Farbe
		1=rot	eines Steuerungsrelais aus, wenn es im an-
		2=grün	gezogenen Zustand ist.
		3=gelb	
939	Farbe optionale Relais	0=keine Farbe	In diesem Parameter wählt man die Farbe
		1=rot	eines optionalen Relais aus, wenn es im an-
		2=grün	gezogenen Zustand ist.
		3=gelb	

Verwenden der folgenden Parameter erreicht werden:

Alle Relais die nicht programmiert sind zeigen "keine Farbe", d.h. sie sind abgefallen.

13.20.6 Überwachung (Watchdog)

Hier kann überprüft werden, wie oft das Gerät eingeschaltet wurde. Es speichert Datum und Uhrzeit der letzten 10 Starts. Dies kann nützlich sein, wenn es Stromausfälle gegeben hat oder wenn der NivuMaster aufgrund eines Fehles neu startet. Der NivuMaster kann für den Fall eines Stromausfalls über eine Stützbatterie betrieben werden. Das Gerät arbeitet so ohne Unterbrechung und verzeichnet keinen Ausfall der Stromversorgung. Sollte die Stützbatterie während eines Stromausfalls ausfallen, wird ein Neustart aufgezeichnet, sobald die Stromversorgung wieder hergestellt wurde.

Auf folgende Parameter kann durch direkte Eingabe der Parameternummer zugegriffen werden:

Anzahl der Neustarts (P940) Dieser Parameter zeigt, wie oft das Gerät aus- und wieder eingeschaltet wurde.

Start Datum & Zeit (P941-960) Diese Parameter zeigen Datum und Uhrzeit der letzten 10 Wiedereinschalt-Vorgänge.

13.20.7 Sommerzeit

Bitte überprüfen Sie P932 Zeit um sicherzustellen, dass die aktuelle Zeit eingestellt und somit die korrekte Umstellung zwischen Sommer- bzw. Winterzeit gewährleistet ist.

Nr.	Parameter	Auswahl	Beschreibung
970	Sommerzeit?	0= Nein	Sommerzeitumschaltung aktiviert?
		1= Ja	
971	Zeitdifferenz	F= 01:00	Zeitverschiebung bei Sommerzeit
972	Start Zeit	F= 02:00	Dieser Parameter wird benötigt, um die
			Tageszeit zu setzen, zu der die Umschal-
			tung auf Sommerzeit erfolgen soll. Die Zeit
			wird in HH:MM eingegeben (24-Std-
			Format).
973	Start Tag	2 = Montag	Sommerzeit startet an einem Montag
		3 = Dienstag	Sommerzeit startet an einem Dienstag
		4 = Mittwoch	Sommerzeit startet an einem Mittwoch
		5 = Donnerstag	Sommerzeit startet an einem Donnerstag
		6 = Freitag	Sommerzeit startet an einem Freitag
		7 = Samstag	Sommerzeit startet an einem Samstag
		8 = Sonntag	Sommerzeit startet an einem Sonntag
974	Start Woche	1 = Woche 1	Sommerzeit startet am Tag (P973) in der
			ersten Woche des Monats (P975)
		2 = Woche 2	Sommerzeit startet am Tag (P973) in der
			zweiten Woche des Monats (P975)
		3 = Woche 3	Sommerzeit startet am Tag (P973) in der
			dritten Woche des Monats (P975)
		4 = Woche 4	Sommerzeit startet am Tag (P973) in der
			vierten Woche des Monats (P975)
		5 = letzte	Sommerzeit startet am Tag (P973) in der
			letzten Woche des Monats (P975)
975	Start Monat	1	Sommerzeit startet während des ausge-
		:	wählten Monats
		:	
		12	
976	Ende Zeit	F= 02:00	Dieser Parameter wird benötigt, um die
			Tageszeit zu setzen, zu der Sommerzeit
			enden soll. Die Zeit wird in HH:MM einge-
			geben (24-Std-Format)
977	Ende Tag	2 = Montag	Sommerzeit endet an einem Montag
		3 = Dienstag	Sommerzeit endet an einem Dienstag
		4 = Mittwoch	Sommerzeit endet an einem Mittwoch
		5 = Donnerstag	Sommerzeit endet an einem Donnerstag
		6 = Freitag	Sommerzeit endet an einem Freitag
		7 = Samstag	Sommerzeit endet an einem Samstag
		8 = Sonntag	Sommerzeit endet an einem Sonntag

978	Ende Woche	1 = Woche 1	Sommerzeit endet am Tag (977) in der ers-
			ten Woche des Monats (P979)
		2 = Woche 2	Sommerzeit endet am Tag (977) in der
			zweiten Woche des Monats (P979)
		3 = Woche 3	dritten Woche des Monats (P979)
		4 = Woche 4	Sommerzeit endet am Tag (977) in der
			vierten Woche des Monats (P979)
		5 = letzte	Sommerzeit endet am Tag (977) in der
			letzten Woche des Monats (P979)
979	Ende Monat	1	Sommerzeit startet während des ausge-
		:	wählten Monats
		:	F= 10
		12	

13.20.8 Service Alarm

Diese Funktionen sind ab Firmware Version 7.4.2 oder höher verfügbar.

P194 Datum

Der Parameter ermöglicht das Einstellen des nächsten fälligen Wartung, z.B. 19/04/15. Nach dem Reset (P199) wird das nächste Datum automatisch gesetzt (wie unter ,Intervall (Tage)' (P195) eingestellt). Werksseitige Einstellung: 01/01/2014 (TT/MM/JJ)

P195 Intervall (Tage)

Hier wird das Intervall (in Tagen) zwischen den einzelnen Wartungen eingestellt. Nach dem Auslösen eines Servicealarms und einem anschließenden Reset (P199) wird das unter P194 voreingestellte Intervall neu gestartet. Wenn beispielsweise ein Intervall von 365 Tagen eingestellt ist, wird nach dem Reset das Intervall von 365 Tagen neu gestartet. 7 Tage vor Ablauf des Intervalls erscheint in der Anzeige die folgende Erinnerung an das Fälligkeitsdatum:

"Wartung fällig in 7 Tagen, bitte unter Telefonnr. 01684 891381 einen Servicetermin ausmachen".

Täglich um 12 Uhr zählt das Gerät jeweils einen Tag bis zum Fälligkeitsdatum zurück.

Das für den Servicealarm zuständige Relais ändert seinen Status und die LED leuchtet rot (Details zur Einstellung siehe ,Relais > Alarm').

Die Anzeige lautet nur: "Wartung fällig, bitte unter Telefonnr. 01684 891381anrufen".

P196 Null Vorwahl

Einstellung der Anzahl der im Display dargestellten Vorwahl-Nullen (bei Erscheinen der Service-Telefonnummer).

Zum Beispiel: ,00' einstellen für die internationale Telefonnummer und ,0' für die nationale Telefonnummer.

P197 Vorwahl

Eingabe der Telefon-Vorwahlnummer, die bei einer fälligen Wartung in der Anzeige erscheint. Wenn unter ,P196' die Anzahl der Vorwahl-Nullen entsprechend eingestellt wurden, muss hier nur die Telefonnummer ohne ,0' eingegeben werden: 1684 im Festnetz.

P197 Telefonnummer

Eingabe der Telefonnummer ohne Vorwahl: 891371 im Festnetz (bzw. 1234567 für eine Mobilnetznummer).

P199 Servicealarm zurücksetzen

Nach Durchführung der Wartung wird hier der Servicealarm zurückgesetzt. Dazu ,1' eingeben und ,ENTER' drücken. Der Reset ist erfolgt.

Wenn unter ,Intervall' (P195) ein Intervall eingestellt ist, wird das nächste Fälligkeitsdatum unter ,Datum' (P194) automatisch gesetzt.

Das für den Servicealarm zuständige Relais im Gerät muss programmiert werden, damit es korrekt funktioniert.

13.21 Kommunikation

Setup RS232 Baudrate (P061) Hier kann die Kommunikationsgeschwindigkeit (Baudrate) der RS232-Schnittstelle eingestellt und diese somit auf ein angeschlossenes Gerät abgestimmt werden. **Werkseinstellung = 19200**.

Setup RS 485 (optional)

Für Details bezüglich Verfügbarkeit und Optionen dieser Schnittstelle beziehen Sie sich bitte auf die entsprechende Bedienungsanleitung.

13.22 Test/Simulation

13.22.1 Simulation

P980 Simulieren

Dieser Modus dient zur Simulation der Applikation um zu überprüfen, ob alle Parameter und Schaltpunkte korrekt eingestellt sind. Während der Simulation kann gewählt werden, ob die Relais tatsächlich Schaltvorgänge ausführen sollen (Hard Simulation) oder nicht (Soft Simulation). Die LEDs auf der Gerätevorderseite wechseln in beiden Fällen ihre Farben wie programmiert und parallel dazu wird ein entsprechendes Signal ausgegeben. Wollen Sie die Schaltlogik der angeschlossenen Relais testen verwenden Sie bitte die Hard Simulation. Sollen die Relais nicht schalten, benutzen Sie bitte Soft Simulation.

Es gibt einen automatischen und einen manuellen Simulationsmodus. Die Automatik bewegt den Füllstand zwischen einem vordefinierte Anfangsfüllstand (P983) oder dem Leerstand und den Pumpen- bzw. Steuerungsschaltpunkten der Relais. Um diese Punkte zu überschreiten bzw. die Bewegungsrichtung der Simulation umzukehren, benutzen Sie bitte die Pfeiltasten. Im manuellen Modus können Sie mittels der Pfeiltasten den Füllstand beliebig simulieren.

Eingabemöglichkeiten des Simulationsmodes:

0 = AUS	Mode ist nicht aktiv
1 = Manuel Soft	manuelle Wertänderung: Relais schalten nicht, LED leuchtet
2 = Auto Soft	automatische Wertänderung: Relais schalten nicht, LED leuchtet
3 = Manuel Hard	manuelle Wertänderung: Relais schalten
4 = Auto Hard	automatische Wertänderung: Relais schalten

Durch Drücken der C-Taste kann die Simulation beendet werden.

!

Die Startverzögerung der Pumpen (Werkseinstellung = 10 Sekunden) ist während der Simulation auf 0 gesetzt.

P981 Schrittweite

In der Werkseinstellung bewegt sich der simulierte Füllstand bei der manuellen Simulation mit 0,1m/min und bei der automatischen Simulation mit 0,25m/min. Diese Schrittweite kann mit diesem Parameter verändert werden.

P982 Rate Schrittweite

Hier kann der Zeitraum, innerhalb dessen sich die Schrittweite P981 verändert, zwischen 1 und 100 Minuten eingestellt werden. **Werkseinstellung = 1 min**.

P983 Anfangsfüllstand

Mit diesem Parameter wird der Füllstand eingestellt, ab welchem die Simulation beginnen bzw. zu welchem die Simulation zurückkehren soll. Dies dient zur Simulation des niedrigsten normalerweise erreichten Füllstands.

P984 Änderung Schrittweite

Während die Simulation läuft kann die Schrittweite P981 verändert werden. Sie wird um den in diesem Parameter eingestellten Wert mittels der "minus"-Taste verringert oder entsprechend mit der "plus"-Taste erhöht. Werkseinstellung = 0,1m.

13.22.2 Hardware

P990 Selbsttest

Bei Eingabe von 1 in diesem Parameter führt der NivuMaster einen Selbsttest durch. Dies stellt sicher, dass die verschiedenen Schaltkreise im Gerät ordnungsgemäß funktionieren. Bei Fehlfunktionen wird eine entsprechende Fehlermeldung ausgegeben.

P991 Hard Test	
Ist diese Option aus	gewählt führt das Gerät die folgenden Tests im Wechsel
aus:	
LEDs:	wenn die LEDs entsprechend der Anzeige auf dem Dis-
Relais:	drücken Sie eine dem gewünschten Relais entsprechende
	Taste seinen Zustand. Durch Drücken einer anderen be- liebigen Taste wird der Test beendet.
Displaysegmente:	alle Segmente des LC-Displays werden aktiviert. Sind alle funktionsfähig, drücken Sie die E-Taste zum Beenden des Tests, Dadurch springen gleichzeitig alle LEDs auf grün
Tasten:	drücken Sie hier jede Taste einmal um ihre Funktion zu bestätigen. Im Display wird angezeigt, wie viele Tasten noch gedrückt werden müssen. Zum Abschluss dieses Tests müssen Sie die C-Taste betätigen. Dies zeigt an, ob alle Tasten gedrückt wurden. Wenn nicht, erscheint hier eine Fehlermeldung.

P992 Test mA-Ausgang

Dieser Parameter veranlasst, dass ein definierter Strom an den mA-Ausgang geschickt wird. Dies ermöglicht die Überprüfung der korrekten Funktion des angeschlossenen Geräts.

P993 Test mA-Eingang

Es wird der momentan anliegende mA-Wert des optionalen mA-Eingangs angezeigt.

P994 Test Sensor

Wenn Sie in diesem Parameter 1 eingeben, sendet der Sensor kontinuierlich so lange Impulse aus, bis Sie diesen Vorgang durch Drücken einer beliebigen Taste abbrechen.

P995 Test Tasten

Drücken Sie hier jede Taste einmal um ihre Funktion zu bestätigen. Im Display wird angezeigt, wie viele Tasten noch gedrückt werden müssen. Zum Abschluss dieses Tests müssen Sie die C-Taste betätigen. Dies zeigt an, ob alle Tasten gedrückt wurden. Wenn nicht, erscheint hier eine Fehlermeldung.

13.23 Beispiele

13.23.1 Mengen- bzw. Durchflussmessung

Venturimessungen

	Aufgal	be: Erfassung einer Durchflussmenge mit einer Venturi-Halbschale.
Anwendung	T	
Betriebs	sparameter	
	P100 = 5	Mengenmessung
	P101 = 2	Sensor Typ P-06
	P102 = 1	Flüssigkeit
Abme	essungen	
	P104 = 2	Maßeinheit cm
	P105 = 150	Abstand Sensor zum Nullpunkt 150 cm
	P106 = 50	Füllstand bei max. Durchfluss
	P107 = 30	Nahausblendung 30 cm
	P108 = 20%	Endbereichserweiterung 20 %
	-	
Mengenmessung		
Auswah	I Applikation	
	P/00 = 1	Berechung über eine Exponentialfunktion
	P/01 = 3	Wehrform: Venturigerinne
	P702 = 2	Berechnungsformel: Q=Q _{max} x (h : h _{max}) [^]
	P704 = 50	max. Füllstand im Venturigerinne 50 cm
	P705 = 200	max. Durchfluss des Venturigerinnes 200 l/s
	P706 = 1	Einheit der Menge (Q) =Liter
	P707 = 1	Einheit der Zeit (t) = Sekunden
	P708 = 0	Kommastellen beim Durchflusswert
	P709 = 5	Nullpunktunterdrückung
Abme	essungen	
	P717 = 1,5	
		Exponent wird automatisch bei 701=3 auf 1,5 eingestellt.
		Muss nicht eingegeben werden!

Menge

Messungen am V-Wehr

	Aufgabe:	Erfassung einer Durchflussmenge an einem V-Wehr.
Anwendung		
Betriebspa	arameter	
F	P100 = 5	Mengenmessung
F	P101 = 2	Sensor Typ P-06
F	P102 = 1	Flüssigkeit
Abmess	ungen	
F	P104 = 2	Maßeinheit cm
F	P105 = 150	Abstand Sensor
		zum Beckenboden 150cm
F	P106 = 27	max. Füllstand
F	P107 = 30	Nahausblendung 30cm
F	P108 = 20%	Endbereichserweiterung 20%

Messung wenn h_{max} und der Öffnungswinkel des Wehres bekannt sind. Mengenmessung

Mengerimes	sung		_
	Auswahl A	Applikation	
		P700 = 5	Spezielle Anwendungen
		P701 =3	V-Wehr
		P702 = 2	Berechnungsformel Q=Qmax x (h : hmax)x
		P703 = 50	Beginn des Überfalls bezogen auf Nullpunkt (P105) = Wehrspitze
		P704 = 30	Wehrhöhe hmax = 30cm
		P705 = 67	Qmax
		P706 = 2	Einheit der Menge (Q) =m ³
		P707 = 1	Einheit der Zeit (t) = Sekunden
		P708 = 0	Kommastellen beim Durchflußwert
		P709 = 2%	Nullpunktunterdrückung
	Abmes	sungen	
		P710 = 28	Eingabe des Öffnungswinkels z.B. 28°
			•

Messung wenn hmax und Qmax bekannt sind. Mengenmessung

messung		
Auswahl A	Applikation	
	P700 = 1	Exponential
	P701 =6	V-Wehr
	P702 = 2	Berechnungsformel Q=Qmax x (h : h _{max})x
	P703 = 50	Beginn des Überfalls bezogen auf Nullpunkt (P105) = Wehrspitze
	P704 = 30	Wehrhöhe 30cm
	P705 = 67	Qmax
	P706 = 1	Einheit der Menge (Q) =Liter
	P707 = 1	Einheit der Zeit (t) = Sekunden
	P708 = 0	Kommastellen beim Durchflußwert
	P709 = 2%	Nullpunktunterdrückung
Abmes	sungen	
	P717 = 2,5	Exponent wird bei Auswahl V-Wehr (P701) automatisch eingestellt

Messung am Rechteckwehr

Messung wenn hmax und Qmax bekannt sind.

Mengenmessung	Ī	
Auswahl A	Applikation	
	P700 = 1	Exponential
	P701 = 1	Rechteck
	P702 = 2	Berechnungsformel Q=Qmax x (h : hmax)x
	P703 = 200	Beginn des Überfalls bezogen auf Nullpunkt (P105) = Schwellenhöhe
	P704 = 30	max. Überfallhöhe 30cm
	P705 = 5000	max. Überfallmenge 5000l/s
	P706 = 1	Einheit der Menge (Q) =Liter
	P707 = 1	Einheit der Zeit (t) = Sekunden
	P708 = 0	Kommastellen beim Durchflusswert
	P709 = 5%	Nullpunktunterdrückung
Abmessunger	1	
	P717 = 1,5	Exponent wird automatisch bei 701=1 auf 1,5 eingestellt.
		Muss nicht eingegeben werden!

Q/h Kennlinie

Messung, wenn Kennlinie oder Stützpunkte bekannt sind

Mengenmessung		
Auswahl	Applikation	
	P700 = 6	Universal
	P701 = 1	Linearisierung über Interpolierung der Stützpunkte
	P702 =	wird bei Stützpunktberechnung nicht benötigt.
	P703 = 200	Beginn des Überfalls bezogen auf Nullpunkt (P105) = Schwellenhöhe
	P704 =	muss mindestens dem Wert des letzten Höhenstützpunktes entsprechen
		wird von NivuMaster berechnet oder es kann der Wert des letzten
	P705 =	Mengestützpunktes eingegeben werden.
	P706 = 1	Einheit der Menge (Q) =Liter
	P707 = 1	Einheit der Zeit (t) = Sekunden
	P708 = 0	Kommastellen beim Durchflusswert
	P709 = 5%	Nullpunktunterdrückung
	-	
Stütz	punkte	
	P730 = 0	Höhenstützpunkt #1 muss 0 sein.
	P731 = 0	Mengenstützpunkt #1 muss 0 sein.
	P732 = x	Höhenstützpunkt #2
	P733 = x	Mengenstützpunkt #2
	P734 -P749	
	P792 =	Höhenstützpunkt #32 (maximal einzugebender Höhenstützpunkt)
	5-00	

Der zuletzt programmierte Stützpunkt, muss den Werten aus P704 und P705

entsprechen. Der maximal angezeigte Durchfluss entspricht dem zuletzt eingegebenen Mengenstützpunkt.

Optionen bei der Mengenmessung

Einstellen der Summiererimpulse

An:	zeige	
	Summierer	
	P820 = 0	Zählerstand des Mastersummierers vorgeben oder rücksetzen
	P821 = 0	Zählerstand des Tageszählers vorgeben oder rücksetzen.
	P822 = 2	Kommastellen beim Summierer vorgeben
	0000 - 7	Faktor mit dem die angezeigte Durchflussmenge (z.B. in l/s)
	F023 = 7	vor dem Aufsummieren multipliziert wird.
		Bsp: Anzeige in I/s -> Summierer soll m ³ anzeigen
		In P823 muß 7 (*1000) eingegeben werden.

Rückstellbaren Summierer in der Hilfsanzeige anzeigen:

Anz	zeige
	Statusanzeige
	P816 - 1

1 Summierer im Betriebsmode in der Anzeige darstellen.

Freigabe der beiden Zähler für Summierung:

Anz	eige
	Summierer

P824 = 1 Summierer aktivieren (0= Funktion gesperrt)

Rückstellbaren Summierer auf 0 zurücksetzten

Zum Rücksetzten des Tageszählers während des Betriebes müssen nachfolgende Tasten gedrückt werden.

drücken bis in der Anzeige der Zählerstand "Tot R x x x x x" erschei
--

E Die Rückfrage des NivuMaster "Enter wenn o.k." mit der E-Taste bestätigen. Der Tageszähler ist auf 0 zurückgesetzt.

Mengenimpuls für Durchflussmessung

Relaisprogrammierung	
Relais Nr.1	
P210 = 4	Zählerstand des Mastersummierers vorgeben oder rücksetzen
P211 = 2	Zählerstand des Tageszählers vorgeben oder rücksetzen.
P212 = 1	Kommastellen beim Summierer vorgeben
P213 = 1"	Schaltpunkt 1: faktor mit dem die Imulseinheiten ausgegeben werden sollen.
P214 = 1	Schaltpunkt 2: Impulsdauer in Sekunden

" = zeigt der NivuMaster die Menge in I/s an (P706=1 / P707=1), und ist der Impulsfaktor des internen Summierers auf Lx1000 eingestellt (P823=7), so zieht das Relais 1x alle Lx1000 I/s (=m³) an.

14 Fehlerbehebung

In diesem Abschnitt werden mögliche Fehlerquellen sowie Möglichkeiten der Behebung von Ursachen aufgeführt.

Symptom	Behebung
Keine Anzeige auf dem Display,	Überprüfen von Stromversorgung, Spannungswahlschalter und
Sensor taktet nicht	Sicherung.
Displayanzeige "Kein Sensor"	Sensorverkabelung überprüfen
Displayanzeige "Sensorfehler"	Fehler beim Sensoranschluss, Sensoranschlüsse prüfen
Der momentane Füllstand wird	Tatsächlichen Abstand zwischen Sensorsendefläche und Medi-
nicht korrekt angezeigt	umsoberfläche messen. Im Programmmode unter P21 den ge-
	messenen Abstand eingeben und mit der E-Taste bestätigen.
	Am Display erscheint die Meldung "Enter wenn ok" – diese wird
	mit der E-Taste bestätigt. Das Gerät springt anschließend auto-
	matisch ins System-Menü.
Füllstand ist permanent um den	Leerstand (P105), Display Offset (P802) und Messoffset (P851)
gleichen Betrag verschoben	überprüfen.
LEDs verändern bei den entspre-	Spannungsversorgung zum Gerät und korrekte Stellung des
chenden Schaltpunkten ihre Far-	Spannungswahlschalters prüfen.
be, die Relais schalten jedoch	
nicht	

15 Parameterlisten

15.1 Applikation

15.1.1 Betrieb

Parameter		Eingabewerte					
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5
P100	Betriebsmode	1 = Abstand					
P101	Sensortyp	2 = P-06					
P102	Material	1 = Flüssigkeit					
P103*	Eingang 2	0 = kein Sens.					

15.1.2 Abstände

Parameter		Eingabewerte					
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5
P104	Messeinheiten	1 = Meter					
P105	Leerstand	6,000 m					
P106	Messspanne	5,700 m					
P107	Nahbereichsausblendung	0,300 m					
P108	Enderweiterung	20,0 %					

15.1.3 mA-Eingang* (optional)

Parameter		Eingabewerte					
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5
P119*	mA Zustand	0 = mA OK					
P120*	mA bei Min.	4,0 mA					
P121*	mA bei Max.	20 mA					
P122*	Füllstand bei Min.	0,0 m					
P123*	Füllstand bei Max.	6,0 m					
P124*	Feinabgleich mA bei Min.	0,00					
P125*	Feinabgleich mA bei Max.	0,00					

15.2 Pumpeneffizienz*

15.2.1 Einrichten*

Parameter		Eingabewerte					
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5
P187	Pumpeneffizienz?	0 = Aus					
P188	Verzögerung Kalibrierung	45 Sekunden					
P189	Dauer Kalibrierung	45 Sekunden					
P190	Haltezähler	6					
P191	Pumpen zurückstufen	0 = Aus					
P192	Kennz. Zurückstufung	Nur f. Anzeige					
P193	Kalibrierung Pumpen	0 = Aus					

Menge

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

15.3 Relais

15.3.1 Relais 1

Paramete	er	Eingabewerte					
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5
P210	R1 Тур	0 = Aus					
P211	R1 Funktion	0 = Aus					
P212	R1 Alarmart	1 = Aus					
P213	R1 Schaltpunkt1	0,000 m					
P214	R1 Schaltpunkt 2	0,000 m					
P215	R1 Schaltpunkt 3	0,000					
P217	R1 Schaltspiele	0					
P218	R1 Fehlermode	0					
P219	R1 Max. Änderungsrate	0,000 m/min.					

15.3.2 Relais 2

Parameter		Eingabewerte					
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5
P220	R2 Тур	0 = Aus					
P221	R2 Funktion	0 = Aus					
P222	R2 Alarmart	1 = Aus					
P223	R2 Schaltpunkt1	0,000 m					
P224	R2 Schaltpunkt 2	0,000 m					
P225	R2 Schaltpunkt 3	0,000					
P227	R2 Schaltspiele	0					
P228	R2 Fehlermode	0					
P229	R2 Max. Änderungsrate	0,000 m/min.					

15.3.3 Relais 3

Parameter		Eingabewerte					
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5
P230	R3 Тур	0 = Aus					
P231	R3 Funktion	0 = Aus					
P232	R3 Alarmart	1 = Aus					
P233	R3 Schaltpunkt1	0,000 m					
P234	R3 Schaltpunkt 2	0,000 m					
P235	R3 Schaltpunkt 3	0,000					
P237	R3 Schaltspiele	0					
P238	R3 Fehlermode	0					
P239	R3 Max. Änderungsrate	0,000 m/min.					

15.3.4 Relais 4*

Parameter		Eingabewerte					
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5
P240	R4 Тур	0 = Aus					
P241	R4 Funktion	0 = Aus					
P242	R4 Alarmart	1 = Aus					
P243	R4 Schaltpunkt1	0,000 m					
P244	R4 Schaltpunkt 2	0,000 m					
P245	R4 Schaltpunkt 3	0,000					
P247	R4 Schaltspiele	0					
P248	R4 Fehlermode	0					
P249	R4 Max. Änderungsrate	0,000 m/min.					

15.3.5 Relais 5*

Parameter		Eingabewerte					
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5
P250	R5 Тур	0 = Aus					
P251	R5 Funktion	0 = Aus					
P252	R5 Alarmart	1 = Aus					
P253	R5 Schaltpunkt1	0,000 m					
P254	R5 Schaltpunkt 2	0,000 m					
P255	R5 Schaltpunkt 3	0,000					
P257	R5 Schaltspiele	0					
P258	R5 Fehlermode	0					
P259	R5 Max. Änderungsrate	0,000 m/min.					

15.4 Erweiterte Pumpenparameter* (nur bei 5 Relais)

15.4.1 Stoppverzögerung*

Parameter		Eingabewerte						
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5	
P348	Stoppverzögerung	0,0 Sek.						

15.4.2 Nachlauf *

Parameter		Eingabewerte					
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5
P349	Mindestfüllstand	0,0 m					
P350	Intervall	0,00 Stunden					
P351	Nachlauf	0,0 Sekunden					

15.4.3 Startverzögerung*

Parameter		Eingabewerte					
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5
P352	Pumpe -> Pumpe	10,0 Sek.					
P353	Netz -> Pumpe	10,0 Sek.					

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

15.4.4 Testfunktion*

Parameter		Eingabewerte					
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5
P354	Einschalten	0 = Nein					
P355	Zyklusdauer	720,00 Min.					
P356	Einschaltdauer	30,0 Sek.					
P357	Mindesthöhe	0,0 m					

15.4.5 Schaltbereich*

Parameter		Eingabewerte						
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5	
P360	Variabler Schaltpunkt	0,00 m						

15.4.6 Sturmbetrieb*

Parameter		Eingabewerte						
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5	
P370	Zustand Pumpe	1 = Normal						
P371	Dauer Pumpe	30,00 Min.						

15.5 Datenaufzeichnung

15.5.1 Übersichten Summenzähler

Parameter		Eingabewerte					
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5
P460	Datum Summe 1						
P461	Summe 1						
P462	Datum Summe 2						
P463	Summe 2						
P464	Datum Summe 3						
P465	Summe 3						
P466	Datum Summe 4						
P467	Summe 4						
P468	Datum Summe 5						
P469	Summe 5						
P470	Datum Summe 6						
P471	Summe 6						
P472	Datum Summe 7						
P473	Summe 7						
P474	Datum Summe 8						
P475	Summe 8						
P476	Datum Summe 9						
P477	Summe 9						
P478	Datum Summe 10						
P479	Summe 10						

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

15.5.2 Aufzeichnung Pumpenbetrieb Pumpe 1*

Parameter		Eingabewerte					
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5
P511	P1 Betriebsstunden	0,00 Stunden					
P512	P1 Starts	0					
P513	P1 Starts / Stunde	0					
P514	P1 Nachlauf	0					
P515	P1 Draw						
P516	P1 Auslastung						

15.5.3 Aufzeichnung Pumpenbetrieb Pumpe 2*

Parameter		Eingabewerte					
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5
P521	P2 Betriebsstunden	0,00 Stunden					
P522	P2 Starts	0					
P523	P2 Starts / Stunde	0					
P524	P2 Nachlauf	0					
P525	P2 Draw						
P526	P2 Auslastung						

15.5.4 Aufzeichnung Pumpenbetrieb Pumpe 3*

Parameter		Eingabewerte					
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5
P531	P3 Betriebsstunden	0,00 Stunden					
P532	P3 Starts	0					
P533	P3 Starts / Stunde	0					
P534	P3 Nachlauf	0					
P535	P3 Draw						
P536	P3 Auslastung						

15.5.5 Aufzeichnung Pumpenbetrieb Pumpe 4*

Parameter		Eingabewerte					
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5
P541	P4 Betriebsstunden	0,00 Stunden					
P542	P4 Starts	0					
P543	P4 Starts / Stunde	0					
P544	P4 Nachlauf	0					
P545	P4 Draw						
P546	P4 Auslastung						

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

15.5.6 Aufzeichnung Pumpenbetrieb Pumpe 5*

Parameter		Eingabewerte					
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5
P551	P5 Betriebsstunden	0,00 Stunden					
P552	P5 Starts	0					
P553	P5 Starts / Stunde	0					
P554	P5 Nachlauf	0					
P555	P5 Draw						
P556	P5 Auslastung						

15.5.7 Temperatur

Parameter		Eingabewerte					
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5
P580	Minimum Temperatur	Nur f. Anzeige					
P581	Datum Minimum Temp.	Nur f. Anzeige					
P582	Zeit Minimum Temp.	Nur f. Anzeige					
P583	Maximum Temperatur	Nur f. Anzeige					
P584	Datum Maximum Temp.	Nur f. Anzeige					
P585	Zeit Maximum Temp.	Nur f. Anzeige					
P586	Aktuelle Temperatur	Nur f. Anzeige					

15.6 Mengen

15.6.1 Einrichtung Pumpe*

Parameter		Eingabewerte					
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5
P205	Fördermengenber. aktiv	0 = Aus					
P206	Ruhezeit	1,00 Minuten					
P207	Methode Zulaufmengenb.	Durchschn. Zul.					

15.6.2 Umwandlung

Parameter		Eingabewerte					
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5
P600	Behälterform	0					
P601	Behälter Abmessung 1	0,00					
P602	Behälter Abmessung 2	0,00					
P603	Behälter Abmessung 3	0,00					
P604	Berechnete Menge	Nur für Anzeige					
P605	Einheiten Menge	$3 = m^3$					
P606	Korrekturfaktor	1,000					
P607	Maximalmenge	Nur für Anzeige					

15.6.3 Stützpunkte

Parameter	ameter Eingabewerte						
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5
P610	Stützpunkt 1 Füllstand	0,00					
P611	Stützpunkt 1 Menge	0,00					
P612	Stützpunkt 2 Füllstand	0,00					
P613	Stützpunkt 2 Menge	0,00					
P614	Stützpunkt 3 Füllstand	0,00					
P615	Stützpunkt 3 Menge	0,00					
P616	Stützpunkt 4 Füllstand	0,00					
P617	Stützpunkt 4 Menge	0,00					
P618	Stützpunkt 5 Füllstand	0,00					
P619	Stützpunkt 5 Menge	0,00					
P620	Stützpunkt 6 Füllstand	0,00					
P621	Stützpunkt 6 Menge	0,00					
P622	Stützpunkt 7 Füllstand	0,00					
P623	Stützpunkt 7 Menge	0,00					
P624	Stützpunkt 8 Füllstand	0,00					
P625	Stützpunkt 8 Menge	0,00					
P626	Stützpunkt 9 Füllstand	0,00					
P627	Stützpunkt 9 Menge	0,00					
P628	Stützpunkt 10 Füllstand	0,00					
P629	Stützpunkt 10 Menge	0,00					
P630	Stützpunkt 11 Füllstand	0,00					
P631	Stützpunkt 11 Menge	0,00					
P632	Stützpunkt 12 Füllstand	0,00					
P633	Stützpunkt 12 Menge	0,00					
P634	Stützpunkt 13 Füllstand	0,00					
P635	Stützpunkt 13 Menge	0,00					
P636	Stützpunkt 14 Füllstand	0,00					
P637	Stützpunkt 14 Menge	0,00					
P638	Stützpunkt 15 Füllstand	0,00					
P639	Stützpunkt 15 Menge	0,00					
P640	Stützpunkt 15 Füllstand	0,00					
P641	Stützpunkt 16 Menge	0,00		-			
P642	Stützpunkt 17 Füllstand	0,00		-			
P643	Stützpunkt 17 Menge	0,00					
P644	Stutzpunkt 18 Fullstand	0,00					
P645	Stutzpunkt 18 Menge	0,00					
P646	Stutzpunkt 19 Fullstand	0,00					
P647	Stutzpunkt 19 Menge	0,00	_				
P648	Stutzpunkt 20 Fullstand	0,00					
P649	Stutzpunkt 20 Menge	0,00					
P05U	Stutzpunkt 21 Fullstand	0,00					
P001	Stutzpunkt 20 Füllstand	0,00					
P002	Stutzpunkt 22 Fullstand	0,00					
P003	Stutzpunkt 22 Menge	0,00					
P054	SIUIZPUNKI 23 FUIISTAND	0,00					

P655	Stützpunkt 23 Menge	0,00			
P656	Stützpunkt 24 Füllstand	0,00			
P657	Stützpunkt 24 Menge	0,00			
P658	Stützpunkt 25 Füllstand	0,00			
P659	Stützpunkt 25 Menge	0,00			
P660	Stützpunkt 26 Füllstand	0,00			
P661	Stützpunkt 26 Menge	0,00			
P662	Stützpunkt 27 Füllstand	0,00			
P663	Stützpunkt 27 Menge	0,00			
P664	Stützpunkt 28 Füllstand	0,00			
P665	Stützpunkt 28 Menge	0,00			
P666	Stützpunkt 29 Füllstand	0,00			
P667	Stützpunkt 29 Menge	0,00			
P668	Stützpunkt 30 Füllstand	0,00			
P669	Stützpunkt 30 Menge	0,00			
P670	Stützpunkt 31 Füllstand	0,00			
P671	Stützpunkt 31 Menge	0,00			
P672	Stützpunkt 32 Füllstand	0,00			
P673	Stützpunkt 32 Menge	0,00			

15.6.4 Tabellen

Parameter		Eingabewerte					
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5
P696	Stützpunkte zurücksetzen	0					
P697	Anzahl Stützpunkte	Nur f. Anzeige					

15.7 OCM Parameter

15.7.1 Einrichten der primären Messeinrichtung

Parameter		Eingabewerte					
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5
P700	Messeinrichtung Typ	0 = Aus					
P701	Primäre Messeinrichtung	1 = Aus					
P702	Berechnung	2 = proportional					
P703	minimale Überfallhöhe	0,000 m					
P704	maximale Überfallhöhe	5,7 m					
P705	maximaler Durchfluss	0,0000 Liter					
P706	Mengeneinheiten	1 = Liter					
P707	Zeiteinheiten	1 = pro Sekunde					
P708	Kommastellen Durchfluss	2					
P709	Minimalmengenunterdr.	5,00 %					

15.7.2 Abmessungen

Parameter		Eingabewerte					
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5
P710	Abmessung "A"	0					
P711	Abmessung "B"	0					
P712	Abmessung "C"	0					
P713	Abmessung "D"	0					
P714	Rauheitskoeffizient	0,0000 mm					
P715	Wassertemperatur	15°C					
P717	Exponent	0					
P718	K-Faktor	0					
P719	Breite Einschnürung	1 = 1 inch					

15.7.3 Berechnungen

Paramete	r	Eingabewerte					
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5
P720	Bereich	Nur f. Anzeige					
P721	Cv	Nur f. Anzeige					
P722	Cd	Nur f. Anzeige					
P723	Ce	Nur f. Anzeige					
P724	Cu / Cs	Nur f. Anzeige					
P725	Kb	Nur f. Anzeige					

15.7.4 Geschwindigkeit (optional)*

Parameter		Eingabewerte					
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5
P726	mA-Eingang Minimum	4,0 mA					
P727	mA-Eingang Maximum	20,0 mA					
P728	Minimalgeschwindigkeit	0,000					
P729	Maximalgeschwindigkeit	1,000					

15.7.5 Stützpunkte

Parameter		Eingabewerte					
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5
P730	Stützpunkt 1 Überfall	0,001					
P731	Stützpunkt 1 Durchfluss	-1,000					
P732	Stützpunkt 2 Überfall	0,001					
P733	Stützpunkt 2 Durchfluss	-1,000					
P734	Stützpunkt 3 Überfall	0,001					
P735	Stützpunkt 4 Durchfluss	-1,000					
P736	Stützpunkt 4 Überfall	0,001					
P737	Stützpunkt 1 Durchfluss	-1,000					
P738	Stützpunkt 5 Überfall	0,001					
P739	Stützpunkt 5 Durchfluss	-1,000					
P740	Stützpunkt 6 Überfall	0,001					
P741	Stützpunkt 6 Durchfluss	-1,000					

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

P742	Stützpunkt 7 Überfall	0,001			
P743	Stützpunkt 7 Durchfluss	-1,000			
P744	Stützpunkt 8 Überfall	0,001			
P745	Stützpunkt 8 Durchfluss	-1,000			
P746	Stützpunkt 9 Überfall	0,001			
P747	Stützpunkt 9 Durchfluss	-1,000			
P748	Stützpunkt 10 Überfall	0,001			
P749	Stützpunkt 10 Durchfluss	-1,000			
P750	Stützpunkt 11 Überfall	0,001			
P751	Stützpunkt 11 Durchfluss	-1,000			
P752	Stützpunkt 12 Überfall	0,001			
P753	Stützpunkt 12 Durchfluss	-1,000			
P754	Stützpunkt 13 Überfall	0,001			
P755	Stützpunkt 13 Durchfluss	-1,000			
P756	Stützpunkt 14 Überfall	0,001			
P757	Stützpunkt 14 Durchfluss	-1,000			
P758	Stützpunkt 15 Uberfall	0,001			
P759	Stützpunkt 15 Durchfluss	-1,000			
P760	Stützpunkt 16 Uberfall	0,001			
P761	Stützpunkt 16 Durchfluss	-1,000			
P762	Stützpunkt 17 Uberfall	0,001			
P763	Stützpunkt 17 Durchfluss	-1,000			
P764	Stützpunkt 18 Uberfall	0,001			
P765	Stützpunkt 18 Durchfluss	-1,000			
P766	Stützpunkt 19 Uberfall	0,001			
P767	Stützpunkt 19 Durchfluss	-1,000			
P768	Stützpunkt 20 Uberfall	0,001			
P769	Stützpunkt 20 Durchfluss	-1,000			
P770	Stützpunkt 21 Überfall	0,001			
P771	Stützpunkt 21 Durchfluss	-1,000			
P772	Stützpunkt 22 Überfall	0,001			
P773	Stützpunkt 22 Durchfluss	-1,000			
P774	Stützpunkt 23 Überfall	0,001			
P775	Stützpunkt 23 Durchfluss	-1,000			
P776	Stutzpunkt 24 Überfall	0,001			
P///	Stutzpunkt 24 Durchfluss	-1,000			
P778	Stutzpunkt 25 Überfall	0,001			
P779	Stützpunkt 25 Durchfluss	-1,000			
P780	Stutzpunkt 26 Überfall	0,001			
P781	Stutzpunkt 26 Durchfluss	-1,000			
P782	Stutzpunkt 27 Uberfall	0,001			
P783	Stutzpunkt 27 Durchfluss	-1,000			
P784	Stutzpunkt 28 Überfall	0,001			
P785	Stutzpunkt 28 Durchfluss	-1,000			
P786	Stutzpunkt 29 Uberfall	0,001			
P787	Stutzpunkt 29 Durchfluss	-1,000			
P788	Stutzpunkt 30 Uberfall	0,001			
P789	Stutzpunkt 30 Durchfluss	-1,000			
P790	Stutzpunkt 31 Uberfall	0,001			

P791	Stützpunkt 31 Durchfluss	-1,000			
P792	Stützpunkt 32 Überfall	0,001			
P793	Stützpunkt 32 Durchfluss	-1,000			

15.7.6 Tabellen

Parameter		Eingabewerte					
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5
P796	Stützpunkte zurücksetzen	0 = Nein					
P797	Anzahl Stützpunkte	Nur f. Anzeige					

15.7.7 Mittlerer Durchfluss

Parameter		Eingabewerte						
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5	
P863	Mittlerer Durchfluss	Nur f. Anzeige						
P864	Durchschnittszeit	1 Minute						

15.8 Display

15.8.1 Optionen

Parameter		Eingabewerte					
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5
P800	Einheiten Anzeige	1 = gemessen					
P801	Kommastellen	2					
P802	Offset Anzeige	0,000 m					
P804	Faktor Anzeige	1,000					
P805*	Ursprung Anzeige	0					

15.8.2 Fehlermode

Parameter		Eingabewerte						
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5	
P808	Fehlermode	1 = letzter Wert						
P809	Fehlerzeit	2,0 Minuten						

15.8.3 Statusanzeige

Parameter		Eingabewerte					
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5
P810	Einheiten	1 = Ja					
P811	Alarmmeldungen	0 = Nein					
P812	Pumpenstatus	0 = Nein					
P813	Steuerung	0 = Nein					
P814	Status Relaisoptionen	0 = Nein					
P815*	optionaler Hilfseingang	0 = Nein					
P816*	Summenzähler	0 = Nein					
	(rücksetzbar)						
P817*	Offset Hilfsanzeige	0,000 m					

15.8.4 Summenzähler

Parameter		Eingabewerte					
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5
P820	Summenzähler	Tot 0,00					
P821	Summenzähler	Tot 0,00					
	(rücksetzbar)						
P822	Kommastellen Summenz.	2					
P823	Faktor Summenzähler	4					
P824	Summenzähler EIN	1 = Ein					

15.8.5 Bargraph

Parameter		Eingabewerte						
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5	
P829	Bargraph	1 = Füllstand						

15.9 mA-Ausgang

15.9.1 Bereich

Parameter		Eingabewerte							
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5		
P830	mA Bereich	2 = 4-20							

15.9.2 Betriebsart

Parameter		Eingabewerte						
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5	
P831	mA Betriebsart	0						

15.9.3 Grenzwerte

Parameter		Eingabewerte					
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5
P834	mA Min. Füllstand	0,000 m					
P835	mA Max. Füllstand	6,000 m					

15.9.4 Grenzen

Parameter		Eingabewerte						
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5	
P836	Min. Begrenzung	0,0 mA						
P837	Max. Begrenzung	20,0 mA						

15.9.5 Feinabgleich

Parameter		Eingabewerte							
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5		
P838	Unterer Wert	0,0 mA							
P839	Oberer Wert	0,0 mA							

15.9.6 Fehlermode für mA-Ausgang separat

Parameter		Eingabewerte						
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5	
P840	Fehlermode mA-Ausgang	0						

15.9.7 Zuordnung

Parameter Eingabewerte							
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5
P841	Zuordnung	2 = Sensor 1					

15.10 Kompensation

15.10.1 Offset

Parameter		Eingabewerte							
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5		
P851	Messoffset	0,0 m							

15.10.2 Temperatur

Parameter		Eingabewerte					
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5
P852	Temperaturquelle	1 = Automatisch					
P853*	Zuordnung	0 = Sensor 1					
P854	Feste Temperatur	20,00°C					

15.10.3 Schallgeschwindigkeit

Parameter		Eingabewerte					
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5
P860	Schallgeschwindigkeit	344,100					
P861	Kal. Dist. 1	4,00 m					
P862*	Kal. Dist. 2	4,00 m					

15.11 Stabilität

15.11.1 Dämpfung

Parameter		Eingabewerte						
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5	
P870	Dämpfung steigend	10,000						
P871	Dämpfung fallend	10,000						

15.11.2 Symbolanzeige

Parameter		Eingabewerte							
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5		
P872	Anzeige Befüllung	10,000							
P873	Anzeige Entleerung	10,000							

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

15.11.3 Tendenzrate

Parameter		Eingabewerte					
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5
P874	Aktualisierung	1 = Werte					
P875	Zeitbereich	5,000 Sek.					
P876	Höhendifferenz	0,001 m					
P877	Tendenzwert	Nur f. Anzeige					
P878	Unterdrückung	0,000					

15.11.4 Messfensterbreite

Parameter		Eingabewerte							
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5		
P881	Feste Breite	0,20 m							

Alle Echosignale im Messfenster werden berechnet.

Für Applikationen, bei denen Störkanten ausgeblendet werden sollen, bietet sich folgende Vorgehensweise an.

Zum Ausblenden der Störkante (P21) wird das Messfenster über P881 verkleinert. Nach der Ausblendung wird das Messfenster wieder auf die ursprüngliche Größe eingestellt. Alle Störeinflüsse innerhalb des Messfensters werden nun ausgeblendet.

Bei Applikationen mit sehr schnellen Pegeländerungen sollte das Messfenster so groß gewählt werden, dass die Pegeländerung innerhalb von 10 Sekunden das Messfenster nicht überschreitet.

15.12 Echoverarbeitung

15.12.1 Status Sensor 1

Parameter		Eingabewerte					
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5
P900	Status Sensor 1	Nur f. Anzeige					
P901	Echogüte Sensor 1	Nur f. Anzeige					
P902	Amplitude Sensor 1	Nur f. Anzeige					
P903	Rauschen Mittel	Nur f. Anzeige					
P904	Rauschspitzen	Nur f. Anzeige					

15.12.2 Status Sensor 2*

Parameter		Eingabewerte					
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5
P910	Status Sensor 2	Nur f. Anzeige					
P911	Echogüte Sensor 2	Nur f. Anzeige					
P912	Amplitude Sensor 2	Nur f. Anzeige					
P913	Rauschen Mittel	Nur f. Anzeige					
P914	Rauschspitzen	Nur f. Anzeige					

Diese Funktion ist nur bei der 5-Relais-Version verfügbar.

15.13 System

15.13.1 Codewort

Parameter Eingabewerte							
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5
P921	Aktivierung	1 = Ja					
P922	Eingabe	1997					

15.13.2 Sicherungen

Parameter		Eingabewerte							
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5		
P925	Parameter Backup	0 = Nein							

15.13.3 Systeminfo

Parameter		Eingabewerte					
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5
P926	Software Revision	Nur f. Anzeige					
P927	Hardware Revision	Nur f. Anzeige					
P928	Seriennummer	Nur f. Anzeige					
P929	Nr. Messstelle	1					
P930	Parameter Reset	0 = Nein					

15.13.4 Datum und Uhrzeit

Parameter		Eingabewerte									
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5				
P931	Datum	Akt. Datum									
P932	Uhrzeit	Akt. Uhrzeit									
P933	Format Datumseinstel-	1 = TT:MM:JJ									
	lung										

15.13.5 LED Farben

Parameter		Eingabewerte					
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5
P935	Farbe AUS	3 = Gelb					
P936	Alarmfarben	1 = Rot					
P937	Farbe Pumpen	2 = Grün					
P938	Farbe Steuerung	2 = Grün					
P939	Farbe Optionen	2 = Grün					

15.13.6 Sommerzeit

Parameter		Eingabewerte					
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5
P970	Sommerzeit?	0					
P971	Zeitdifferenz	01:00					
P972	Start Uhrzeit	02:00					
P973	Start Tag	8					
P974	Start Woche	5					

P975	Start Monat	3			
P976	Ende Uhrzeit	02:00			
P977	Ende Tag	8			
P978	Ende Woche	5			
P979	Ende Monat	10			

15.13.7 Service Alarm

Parameter		Eingabewerte					
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5
P194	Datum	01/01/14					
P195	Intervall (Tage)	0					
P196	Null Vorwahl	0					
P197	Vorwahl	00					
P198	Telefonnummer	0					
P199	Servicealarm zurücksetzen	0					

15.14 Kommunikation

15.14.1 Einrichtung RS232

Parameter		Eingabewerte									
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5				
P061	Baudrate	19200									

15.14.2 Einrichtung RS485 (optional)

Modbus

Parameter		Eingabewerte					
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5
P130	Gerätemodus	0 = Aus					
P131	Protokoll	0 = Modbus RTU					
P132	Geräteadresse	126					
P133	Baudrate	19200					
P134	Parität	2 = Gerade					
P135	Stoppbit	1 = ein Stopp					
P136	Datenformat	0 = ohne Vorzei-					
		chen					
P137	Verzögerung in ms	5 ms					

Profibus

Parameter		Eingabewerte					E				
Nr.	Beschreibung	Werkseinst.	1	2	3	4	5				
P132	Geräteadresse	126									
P143	Adresse gesperrt	0 = Nein									

15.15 Serviceparameter

Die Serviceparameter müssen direkt angewählt werden. Sie können nicht über die Menüführung aufgerufen werden.

Sensor 1 /(2)

Parameter		Beschreibung						
Nr. 20	Setze DATEM1	Mit "Setze DATEM 1"	kann der Verlauf der DATEM-Linie (Abdeckkur-					
(30)		ve) beeinflusst werder	. Beim Aktivieren des Parameters wird die Ein-					
		stellung der bisheriger	n Parameterkurve gelöscht. Um die Arbeitsweise					
		der Funktion beobacht	en zu können, wird die NivuMaster PC-					
		Auswertesoftware ben	ötigt.					
		0 = Abbrechen	Der Vorgang kann mit Eingabe 0					
			abgebrochen werden.					
		1= Abdecken Die DATEM-Kurve wird über das Rohecho						
		im gesamten Messbereich gelegt. Dies kann						
		dann nötig sein, wenn sich z.B. bei Abstand-						
		applikationen das Ziel bei der Inbetrieb-						
			nahme außerhalb des Messbereiches					
			befindet.					
		2 = Werkseinstellung	Die DATEM-Kurve wird neu eingelesen					
			aber nicht zurückgesetzt.					
		3 = Werkseinstellung	Die DATEM-Kurve wird entsprechend dem					
			Sensortyp auf seine Grundeinstellung					
			zurückgesetzt. Danach beginnt das Gerät					
			alle Störechos vor dem Nutzecho					
			auszublenden.					
	•	·						

Bei der Neuinbetriebnahme eines Gerätes sollte grundsätzlich mit Parameter P20 die DATEM-Kurve auf Werkseinstellung (2) zurückgesetzt werden.

Parameter		Beschreibung			
Nr. 21	Wähle Echo	Eingabe: Wert in Maßeinheit von P104.			
(31)		Abstand des "richtigen" Echos, gemessen von der Sensorunterkante			
		bis zum Messpunkt.			

Der Parameter P21 wird dann benötigt, wenn z.B. ein höherer Füllstand als der richtige Füllstand angezeigt wird. Beim NivuMaster kann dann der "richtige" Abstand zum Materiallevel eingegeben werden. Alle Störungen davor werden abgedeckt und ausgeblendet.

16 Wartung und Reinigung

Wichtiger Hinweis:

Bei allen Wartungs- und Reinigungsarbeiten ist das Gerät vorher spannungsfrei zu schalten.

Das Gerät Typ NivuMaster ist von seiner Konzeption praktisch kalibrier-, wartungs- und verschleißfrei.

Reinigen Sie bei Bedarf das Gehäuse nur mit einem trockenen antistatischen Tuch. Bei starken Verschmutzungen empfiehlt sich der Einsatz von handelsüblichem Spülmittel.

Setzen Sie keine kratzenden oder schleifenden Reinigungsmittel ein!

In verschiedenen Bundesländern kann es bei speziellen messtechnischen Applikationen notwendig oder erforderlich sein, für die Erfüllung behördlicher Auflagen, Nachweispflichten etc. regelmäßige Wartungen mit Vergleichsmessungen durchführen zu lassen. NIVUS übernimmt bei Bedarf im Rahmen eines abzuschließenden Wartungsvertrags alle erforderlichen turnusmäßigen Überprüfungen, hydraulischen und messtechnischen Beurteilungen, Kalibrierungen, Fehlerbeseitigungen und Reparaturen. Diese erfolgen unter Zugrundelegung der DIN 19559 inkl. des protokollarischen Nachweises des verbleibenden Restfehlers, sowie nach der Eigenkontrollverordnung der entsprechenden Bundesländer. In anderen Ländern informieren sie sich bitte über die dort geltenden Vorschriften.

17 Notfall

Drücken Sie im Notfall den Not-Aus-Taster für die übergeordnete Anlage.

18 Demontage/Entsorgung

Entsorgen Sie das Gerät entsprechend den gültigen örtlichen Umweltvorschriften für Elektroprodukte.

19 Bildverzeichnis

Abb 3-1		15
Abb. 3-7	Typenschild der NivuMaster Serie	16
Abb. 3-2	Typschlüssel für Messumformer NivuMaster 3 Relais	17
Abb. 3-4	Typschlüssel für Messumformer NivuMaster 5 Relais	17
Abb. J_{-1}	Wandaufbaugabäuse NivuMaster 5-Relais	21
Abb. 4-1	Wandaufbaugehäuse NivuMaster 3-Relais	.21
ADD. 4-2	10" Einschub	.∠ı
ADD. 4-3	Cabäusamaßa das Erenttefeleinhaus	.22
ADD. 4-4		.22
ADD. 4-3	Klemmenhologung Wendeufbeugehöuge NivuMeeter 5 Belgie	.23 20
ADD. 5-1	Klemmenbelegung Wandaufbaugehause NivuMaster 3-Relais	.20
ADD. 3-2	Alemmenbelegung wandaubaugenause Nivuwaster 5-Relais	.20
	19 - Kiemmenbelegung für NivuWaster 2-Relais	.20
ADD. 5-4	19 -Kiemmenbelegung für Nivuwaster 3-Kelais	.29
	Kiemmenbelegung Tur Fronttaleleinbau (PAT)	.30
ADD. 5-6	Verlangerung einer Sensorieitung der P- oder R-Serie	.31
ADD. 6-1	Anschluss Überspannungsschutz	.32
ADD. 6-2	Uperspannungsschutz NivuMaster mit Sensor	.33
ADD. 7-1	Anzeigebeschreibung	.30
Abb. 7-2	19"-Gerat mit Handprogrammer	.37
Abb. 7-3	virtueller Handprogrammer der PC-Software	.38
Abb. 7-4	Ansicht Bedientastatur	.40
Abb. 10-1	Schnellstart LV	.50
Abb. 10-2	Fullstanduberwachung mit Alarm	.53
Abb. 10-3	Fullstanduberwachung und Steuerung	.54
Abb. 10-4	Volumen Applikation	.56
Abb. 12-1	Schnellstart-Menü	.89
Abb. 12-2	Füllstandüberwachung mit Alarm	.94
Abb. 12-3	Pumpenüberwachung (leerpumpen)	.95
Abb. 12-4	Reservoirüberwachung (vollpumpen)	.97
Abb. 12-5	Differenzmessung*	.99
Abb. 12-6	Differenzmessung mit in der Höhe unterschiedlich montierter Sensoren	.99
Abb. 12-7	Differenzmessung	101
Abb. 13-1	exponentielles Wehr	155
Abb. 13-2	Venturi-Gerinne	156
Abb. 13-3	Parshall-Gerinne	156
Abb. 13-4	Leopald Lagco-Gerinne	157
Abb. 13-5	exponentielle Messvorrichtung - V-Wehr	158
Abb. 13-6	BS3680 Venturi-Gerinne	159
Abb. 13-7	Wehr (BS3680)	163
Abb. 13-8	BS3680 Rechteckwehr	165
Abb. 13-9	U-Profil	169
Abb. 13-10	Rechteckkanal	169
Abb. 13-11	Trapezförmiger Kanal	170
Abb. 13-12	Rundprofil	171
Abb. 13-13	Messstelle am Beispiel eines Palmer-Bowlus-Gerinne	172

20 Konformitätserklärung

EU Konformitätserklärung EU Declaration of Conformity Déclaration de conformité UE		NIVUS GmbH Im Täle 2
		75031 Eppingen Telefon: +49 07262 9191- Telefax: +49 07262 9191-8 E-Mail: info@nivus.com
For the following produc	÷	
Le produit désigné ci-des	sous:	
Bezeichnung:	Multifunktionaler Messumformer NivuMaster	
Description:	Multi-functional measurement transmitter	
Désignation:	Convertisseur de mesure multifunctionnel	
Тур / Туре:	NMx-xxxx	
bereitgestellten Geräte we declare under our sol this document meets the nous déclarons, sous not	die folgenden einschlägigen Harmonisierungsvorschriften d e responsibility that the equipment made available on the Union m tandards of the following applicable Union harmonisation legisla e seule responsabilité, à la date de la présente signature, la confo	ler Union effüllen: parket as of the date of signature of tion: rmité du produit pour le marché de
l'Union, aux directives d	harmonisation de la législation au sein de l'Union:	
• 2014/35/EU	• 2014/30/EU	
L'évaluation est effectuée spécifications techniques	a partir des normes harmonisées applicable ou la conformité est désignées ci-dessous:	déclarée en relation aux autres
EN 61010-1:201	• EN 61326-1:2013	
Diese Erklärung wird v	erantwortlich für den Hersteller:	
This declaration is subm	tted on behalf of the manufacturer:	
Le fabricant assume la re	sponsabilité de cette déclaration:	
NIVUS GmbH		
Im Taele 2		
75031 Epping	en	
Allemagne		
abgegeben durch / rep	esented by / faite par:	
Marcus Fischer (Geso	hättstührer / Managing Director / Directeur général)	
Eppingen, den 20.04.2	016	
Gez. Marcus Fischer		
Q:\Formulare\CE		